
Computer Networks 186 (2021) 107745

Available online 16 December 2020
1389-1286/© 2020 Elsevier B.V. All rights reserved.

IoT-networks group-based model that uses AI for workgroup allocation

Pedro Luis González Ramírez a,b, Jaime Lloret b,*, Jesús Tomás b, Mikel Hurtado a

a Departamento de Ingeniería Electrónica, Universidad Central, Bogotá D.C, Colombia
b Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Valencia, España

A R T I C L E I N F O

Keywords:
IoT
IoT-smart architecture
IoT-gateway
M2M protocols
ML classifiers
Collaborative workgroups
Network model
Graph theory
Smart IoT-networks

A B S T R A C T

This paper presents a centralized management architecture model for designing workgroup-based Internet of
Things (IoT) and Internet of Everything (IoE) networks. The architecture establishes the organization of an object
according to its functions and capacities in layers. From its model, it is derived the design of the algorithms that
give the network operation. These algorithms include the multi-protocol communication and interconnectivity
algorithm, the routing algorithm, the resource sharing algorithm, and the grouping algorithm, all controlled by
Artificial Intelligence (AI). The grouping algorithm consists of creating collaborative workgroups based on
Machine Learning (ML) techniques that use the objects’ features to allocating these within a workgroup that
attends a type of service and within an architecture layer according to its capabilities. The model was tested with
a simulation that shows the Machine-to-Machine (M2M) interaction between the devices involved in providing a
service to a user within a Smart Home. This simulation uses an AI hosted within an IoT-Gateway to collect data
on the features that define a connected object’s functions and services. The extraction of the features is done
using the Discovery of Functions and Services Protocol (DFSP) transported through an IoT-Protocol. With this
information, the AI assigns a layer and a workgroup to a new object when it enters the network. The result of
these tests can be used to know which ML technique has better accuracy.

1. Introduction

The Artificial Intelligence (AI) techniques have gained high rele-
vance in recent years since it can be applied in fields previously un-
thinkable. After the information age we live in, we may move on to the
AI age. This revolution has been possible because Big Data has made vast
amounts of information available to Machine Learning (ML) techniques
[1]. On the other hand, the network’s analysis and modeling through
mathematical theories allow a better understanding of its operation
while allowing us efficient algorithms or even reaching the optimal one.
Today, the mathematical models of networks are of great importance
when considering algorithms and traffic through numbers, allowing ML
algorithms to analyze these numbers and learn the patterns that will
infer how they will behave in the future. For this purpose, this paper
studies the different mathematical theories used in computing and im-
plements the most appropriate ones applied to communication net-
works. The Internet of Things (IoT) is an excellent scenario to apply
these new technologies and integrate new concepts that will solve au-
tonomy problems in these networks [2].

The most widely accepted concept defines IoT-Networks as the
interconnection of everyday “things or objects” to the Internet [3]. In
this sense, a local IoT-Network can intercommunicate “objects” through
an IoT-Gateway between them and the Internet. Most of them differ in
communication technologies and protocols, and not all are of the same
type. Whereby some models have been proposed to resolve the inter-
operability of these networks. However, there is still no standard, and it
is still possible to propose new alternatives.

In order to achieve interoperability between objects with different
types of IoT-Protocols on the same network, it is needed a control al-
gorithm to act as an intermediary. It is the function that AI performs in
the management layer of the architecture within the IoT-Gateway. Some
of these IoT-Protocols are Machine-to-Machine (M2M) [4] used to
monitor and control objects. However, by incorporating ML techniques
[5] into algorithms, we can achieve the desired autonomy, although we
still have to explore more techniques that allow the same machines to
communicate autonomously. Therefore, the idea is to leverage and
modify an M2M protocol [6] and include an autonomous ML controller
that performs the task of making the network interoperable. This

* Jaime Lloret
E-mail addresses: pgonzalezr1@ucentral.edu.co (P.L. González Ramírez), jlloret@dcom.upv.es (J. Lloret), jtomas@upv.es (J. Tomás), mhurtadom1@ucentral.edu.

co (M. Hurtado).

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

https://doi.org/10.1016/j.comnet.2020.107745
Received 9 October 2020; Received in revised form 29 November 2020; Accepted 14 December 2020

mailto:pgonzalezr1@ucentral.edu.co
mailto:jlloret@dcom.upv.es
mailto:jtomas@upv.es
mailto:mhurtadom1@ucentral.edu.co
mailto:mhurtadom1@ucentral.edu.co
www.sciencedirect.com/science/journal/13891286
https://www.elsevier.com/locate/comnet
https://doi.org/10.1016/j.comnet.2020.107745
https://doi.org/10.1016/j.comnet.2020.107745
https://doi.org/10.1016/j.comnet.2020.107745
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107745&domain=pdf

Computer Networks 186 (2021) 107745

2

controller’s core can be of any type, from a classifier based on neural
networks [7] to a deep learning system [8].

The benefits of objects working in groups allow a user to receive a
service automatically without worrying about keeping control of the
activity. For example, in their home, a group of things would maintain
air quality at normal levels and activate an emergency system when
detecting any danger to their health. Another case could be when
someone visits their home, and the door will announce the visit, and it
will be shown on the screen closest to the user who is at the door. In any
case, the system will try to solve the problem locally before accessing the
Internet for any consultation, alarm, or follow up of the user when they
are away from home through the cloud connection. Many variants of
these services would be monitored by the IA, continuously learning from
their user’s activities, and providing increasingly automated services.

This paper proposes a network model for creating groups in an IoT-
Network using ML. This model describes the possible relations that a
connected object can have when it assumes a role (e.g., Thing, Sensor)
and shares resources, functions, and services in common. The ML learns
these patterns and establishes relations by creating workgroups, turning
it into a collaborative proximity network. Possible application scenarios
are proximity networks in homes, offices, industry, and even smart cities
[9]. All interconnected through the cloud to provide a service to the
same user [10], inside or outside their home.

1.1. Motivation

The appearance of the Smart IoT-Networks, together with the mas-
sification of objects with AI included (Smart Things), implies a greater
challenge than required by a conventional data network. Many IoT ob-
jects are activated by the user in these networks through commands,
either with the mobile phone or an intelligent assistant. On the other
hand, in Smart IoT-Networks, the objects can be autonomous and create
their relations. However, no one knows yet how they will behave, since
there are not yet a significant number of objects working together to
achieve a common goal. There is very little information about these
types of networks and how they will work in the future. Therefore, it is
possible to suppose different scenarios in different ways to propose its
possible operation. Considering the above, it opens opportunities to
propose different architectures that support the transport of information
that an AI requires and solves interoperability between heterogeneous
objects.

1.2. Goals

The main goal is to use the proposed IoT-SmartArchitecture archi-
tecture as the basis for the future design of Smart Networks. However,
there are no real Smart Network scenarios that provide a suitable
ecosystem for smart objects. For this reason, it is proposed a possible
Smart Network scenario on this architecture, assuming that smart ob-
jects will work collectively to provide automatic services to users.
Therefore, this paper focuses on the algorithm for creating workgroups
(grouping) in a Smart IoT-Network. In which the Architecture’s AI uses
an ML classifier with a dataset based on the features extracted from
different objects. With this information, the classifier assigns a work-
group to a “new object” connecting to the network’s first time. In
addition to this, it classifies it and assigns it a role in one layer of the
proposed architecture. Although IoT can be a much broader vision that
implies a global infrastructure in all aspects, we will only study the cases
present in proximity networks. Therefore, the test scenario is a Smart
Home based on wireless technologies due to its ease of simulation.

1.3. Contributions

Currently, conventional networks can include everyday objects with
the ability to connect. However, if the object includes AI, this type of
network can limit its potential. This paper shows what a Smart Home

would look like in the future and recreates possible scenarios where
objects are related to serving users. The above is necessary since the
proposed architecture is designed to organize objects that include AI.
Therefore, without scenarios based on an AI’s control, it would not be
possible to test this architecture. In turn, the obtained algorithms can be
used in similar applications like Industrial Internet of Things (IIoT) en-
vironments [11], among others. Furthermore, this work shows the Dis-
covery of Functions and Services Protocol (DFSP) protocol’s use over an
IoT-Protocol and implementing new messages that facilitate AI work on
the architecture. It also presents the accuracy of different AI techniques
to classify objects in workgroups, which will help determine which the
most adequate to apply in Smart IoT-Networks. Finally, it is shown the
importance of replacing the conventional router with one more
specialized and higher capacity that keeps the network’s centrality.

This paper is structured as follows. Section 2 includes the related
work about groups, architectures, and machine learning. Section 3 for-
mulates the problem and presents the proposal and the network model.
Section 4 presents the implemented algorithms and the time complexity.
In Section 5, the performance test, the devices’ implementation, and the
simulations together with the testbed results. Finally, in Section 6, we
highlight our conclusion and future work.

2. Related work

In this section, it presents the revision of works related to IoT-
Networks group-based and ML. There are already many group-based
network models proposed for IoT or sensor networks in the literature.
However, to highlight this work’s unique contribution, it is necessary to
study and analyze its operation mechanics. Therefore, it is important to
review which works include the use of ML within its algorithms and
what methods had used, and in this way, to know what the evolution of
IoT-Networks has been in the inclusion of AI to create collaborative
workgroups. The following are the most relevant selected works that
show the techniques involved in making grouping, modeling, and
simulation IoT-Networks and ML.

D. Kimovski, H. Ijaz, N. Saurabh, and R. Prodan [12] propose an
architecture called SmartFog, bio-inspired by the human brain. Its
structure describes through three layers: Cloud Layer, Fog Layer, IoT
Layer. In the Fog layer, the devices mimic neurons’ function, and syn-
apses correlate with communication channels, and in the IoT layer, the
devices and sensors represent the sensory nervous system. The groups
are formed autonomously from a set of fog devices called gateways,
using machine learning algorithms. For the selection of communication
gateways or neurons, classification algorithms are used considering
multiple criteria to group by the same type of function. In this way,
clusters with similar functionalities are generated that will execute the
works and tasks requested by the sensor network or from applications in
the cloud.

M. Garcia [13] has demonstrated through simulations that making
groups of nodes in a Wireless Sensor Networks (WSN) improve its per-
formance. The author has proposed creating an architecture based on
groups, making groups of nodes with the same function. A group has a
central node that identifies the group and delimits the group, and each
node has its identifier. Therefore, the proposed architecture allows
collaboration between groups. Finally, the author concludes that
collaborative work between nodes group improves performance and
average delay, avoids information forwarding, and saves energy.

C. Napoli, G. Pappalardo, E. Tramontana et al. [14] describe some
neural network methods used to obtain a classifier that analyzes a
company’s employees through workgroups. The data used on their
professional skills and attitudes are processed, and the resulting infor-
mation indicates how the groups should be created to be more efficient.
To process the data, they used a classifier based on a probabilistic neural
network, which creates workgroups based on the type of relations
generated between employees in terms of collaboration. In this way, this
tool allows employees to be evaluated more fairly and quickly. From the

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

3

results, the authors conclude that the classifier’s accuracy is very high,
which allows demonstrating that the proposal based on a bio-inspired
classification system is viable.

B. Yao, X. Liu, W. Zhang et al. [15] explains the use of graph theory as
a mathematical tool to describe and redefine IoT. The authors also show
IoT as the union and grouping of topological and data-functional net-
works. However, this proposal presents some challenges when using
graph theory in IoT-Networks. Two of these are presented in the paper’s
conclusions and are related to the networks’ topologies and balanced
sets.

K. Batool and M. A. Niazi [16] present a modeling methodology
based on a combination of agents and complex networks for IoT. This
technique uses an agent-based cognitive computing (CABC) framework
to simulate these networks. The IoT is considered a complex network
system because of its rapid growth, and through this tool, it is possible to
model its structure. Additionally, the authors demonstrate the pro-
posal’s effectiveness through a case study where testing a new algorithm
and the devices’ energy consumption monitoring on an IoT-Network.

G. Fortino et al. [17] describe a model IoT-Networks through agents.
This system uses the Agent-based Cooperative Smart Object (ACOSO)
model. Where each Smart Object or Smart Thing in an IoT-Network is
described in this model under the name ‘agent.’ Therefore, it analyzes its
features, relations, and communication level. Authors ensure that this
proposal is an excellent option to model IoT-Networks since there is no
already system for modeling and simulation. The simulation tests used
the OMNET ++ platform to evaluate and analyze possible communi-
cation bottlenecks.

H. Yu and X. Xia [18] present the study of a problem in a network
with multiple agents and a leader. This problem consists of achieving
consensus coordination for dynamic agent networks. It is because
multi-agent systems have applications in many areas, including control
and robotics. However, its use in this article has extended to the area of
dynamic networks. Authors show the design of an adaptive method
based on the theory of graphics and Lyapunov’s theory through an al-
gorithm. Finally, they provide the results obtained from different tests.

Some of the previous proposals show the techniques for conforming
groups of nodes on different architectures and selecting a leader. How-
ever, the proposal [12] groups Gateways into a Fog layer of the proposed
architecture using ML to select the best Gateway (leader) from each
group to connect to the cloud layer. In our proposal, layer four groups
the objects of the lower layers of the architecture using AI (only leader).
The IoT layer used in most architectures is separated in this proposal into
three layers. In this way, the functionalities are separated and kept as a
stand-alone system. Furthermore, it is easier to classify groups and to do
centralized management.

3. Proposal description

3.1. Problem formulation

As a case study, the behavior of connected objects within a house is
analyzed through how they connect and share information between
them and Internet. Currently, a user can acquire everyday objects for
their home based on electronic devices with the ability to process and
communicate. However, the service they provide to the user through
their main function is basic, independent, and isolated, and not based on
cooperative behavior. An extension of its main function is limited to its
control and monitoring over Internet or through a local connection. For
example, an IoT coffee maker is an object with the ability to prepare
coffee and connect to Internet, but it depends entirely on the user’s
control, it is not autonomous, nor does it work collaboratively with other
objects within the house. Most of these objects work in the same way,
although commercially, the arrival of objects based on high capacity
devices that include AI (Smart Things) is expected. Nevertheless, the
conventional network of a house limits them since the router is low
capacity. Moreover, the architecture on which networks are currently

based is not intended to transport the information required by an AI
between connected everyday objects.

In other words, IoT objects are not joined to meet the needs of a user
through the same service automatically. They work independently and
through different types of commands for their activation. An IoT object
does not auto-identify or auto-classify, neither assume work roles in the
network according to its function, nor create automatic relations with
other objects. Much of this problem may be due to the element that
performs the network administration, in which, for this case study, it
could be due to the router. This network element is a device that only
performs two main tasks; it processes automatic network addressing and
Internet access, although it allows connectivity between devices on the
same network. It is a limited capacity device with low processing and
memory level, it does not store high volumes of information, and it is not
reprogrammable. Another additional problem is that it only offers two
interconnection technologies, WiFi and Ethernet. Regarding the archi-
tecture, it is important to mention that, although up to now it has been
possible to work with traditional architectures to interconnect IoT-
Networks, such as Transmission Control Protocol (TCP / IP), there is
no standard architecture to do so. There are some proposals, but none of
them is designed to provide interfaces between layers to an AI or handle
multiple connections of different technologies or multiple IoT-Protocols.
That is, there may be a cloud that supports AI and objects that support
AI, but there are still neither Gateway devices on the market that sup-
ports AI, nor an architecture to allow their integration.

3.2. Architecture proposal

We propose a grouping model for different types of objects that
attend the same service type to a user. The grouping is carried out by an
AI hosted within an IoT-Gateway and is based on ML techniques to
analyze the data extracted from each object connected to the network.

The AI controls the algorithms that make the network operational
and interconnects with the other AIs located in the different architecture
layers through an interface. This interface is described in the operation
of the architecture on which this proposal is based. The workgroup
creation algorithm, which uses ML, analyzes the features that define an
object’s functions and capabilities. With this information, the ML clas-
sifies an object and assigns it within a workgroup according to the type
of service it can collaborate and assigns it a role within an architecture
layer. All objects are different in terms of capabilities and functions and
can provide different services and share different resources; therefore,
an ML can help predict which group an object can belong to and in
which layer should be assigned.

3.3. Architecture with centralized management

This IoT-Architecture with AI (IoT-SmartArchitecture) and central-
ized management encompasses the most important aspects of Cloud,
Edge [19] and Fog computing through SmartFog [12] and integrates
them with other architectures to give place to smart objects in a network
IoT. It is an architecture with additional functionalities that allows,
through the fusion of different architectures [20], solving problems of
adaptation and recognition of functions and services in connected ob-
jects. This architecture organizes objects in 5 layers with an ascending
hierarchical structure in a tree or star between layers 2 to 5 and an
ad-hoc structure in layer 1. With this structure, it is possible to propose
new routing and grouping algorithms for an Smart IoT-Network,
designed under this architecture.

Each layer has a predetermined functionality, so the AI assigns a role
to an object according to the degree of coincidence of its features with
these functionalities. It does not matter which layer an object is
assigned, due to the flexibility of the architecture, the same structure is
still maintained. The objects’ features are directly related to the pro-
cessing capacity, memory, and connectivity of the electronic device.
That is, the assignment of the role is oriented to the hardware’s capacity

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

4

of the objects and the functions that they can perform.
According to Fig. 1, this architecture comprises the next five layers:

Internet, Management, Artificial Intelligence Assistant (AIA), Things,
and Sensors. Each one of them is briefly described below in descending
order.

Layer 5: Internet layer attends to queries from local IoT-Networks
identified with the same user profile, that is, it can maintain a connec-
tion and provide service to the user inside or outside their home, making
parameter groupings. The AI within Cloud assumes the user’s local home
network to use as the main network, and its functionality is based on
maintaining and restricting access to queries, only to the AI of the IoT-
Gateway of local networks, such as home, office, and any place of the
city, connected under the same type of parameter [21,22].

Layer 4: Management layer is the main layer of the architecture and
is controlled by an AI within an IoT-Gateway. This a multi-protocol
gateway with decision-making that also works with different intercon-
nection technologies [23]. It is similar to the network layer that uses the
other architectures, but with the difference that it is interoperable and
intelligent, and it centralizes de information. Its main and most impor-
tant function is to create workgroups and manage internet access. AI
controls the algorithms that interact with the other AIs in the upper layer
(Internet) and the lower layers (AIA, Things, Sensors) through in-
terfaces. This interface is achieved using DFSP [23], a simple protocol
that adapts to each IoT-Protocol payload’s sizes.

When the AI does not know the IoT-Protocol, it consults the AI in the
cloud for its structure, learns it, adapts DFSP to its payload size. In this
way, the AI extracts the data from each object’s features to learn it and
classify it. When a new object is connected to the network, the AI does
not know what type of object it is, so it evaluates it through its features
and, depending on the nearness of these features with the objects
established previously in the network, assigns it a role. With this role,
the AI knows if the object is a Cloud, a Gateway, an AIA, a Thing, a
Sensor, or an Actuator.

In other words, the device on which the Gateway is built under this
architecture must have the capacity to control several algorithms such as
routing and grouping, store, AI support, M2M broker support, and
manage Internet access.

Layer 3: The task of AIAs is the usual and similar to virtual assistants.
These capture command and execute it, but with the difference that it is
no longer done under cloud computing architecture, that is, information
processing is no longer done in the cloud. When the AIA receives a
command to activate a object, it is first analyzed by the Gateway’s AI,
and based on its evaluation, it will decide if it is necessary to do a query
or processing in the cloud or to process it locally. Moreover, to achieve

that an object is actuated locally, the commands must be sent over some
IoT-Protocol and perform an M2M connection. For this, the IoT-Gateway
must have the ability to host a Broker that allows objects within the
architecture to connect via M2M.

Layer 2: Things layer identifies objects of more complex capacity
with diversified uses and physical structures designed for specialized
tasks. As the case study of this work is on Smart Home, most of the
objects are built from large capacity devices designed to operate as
household appliances. These devices have good processing capability
since they can support an AI and, in some cases, handle various types of
connection. The AI in these devices has two fundamental tasks: learning
from the usage habits of its user and reporting the changes and features
to the central AI. Most of the time, objects classified as Things contain
sensors for their operation, which does not imply dividing the object into
two layers. However, if the Thing is a device responsible for collecting
information from sensors in a system, the architecture does divide them.

Layer 1: Sensor layer is a layer that contains sensors and actuators or
objects with both functions. In this layer, these objects can capture
analog and digital signals and transmit it, or even depending on their
ability, can process them. Most of these final objects perform type ON /
OFF or data streaming actions and can operate directly by connecting to
the IoT-Gateway or the Cloud. However, according to this architecture,
its connection point must only be the layer immediately above (layer 2).
The communication between them keeps under the same M2M
connection policies that the IoT-Gateway. However, the connection may
not support an IoT-Protocol. Therefore, to use an end-to-end IoT pro-
tocol in this architecture, it is recommended to use, e.g., MQTT-SN, in
this layer [24].

Processing levels (L): This architecture operates under three pro-
cessing levels integrated and communicated through an interface. Level
1 begins where the data is generated through objects with AI (Smart-
Things), which process or pre-process information about the user’s daily
activity. Level 2 or central, is the IoT-Gateway with AI (SmartGateway),
which centralizes, processes, and classifies the information. Level 3, the
cloud with AI (SmartCloud), processes high volumes of information and
compares and relates them to those of other clouds. These processing
levels allow the separation of functionalities, decrease latency, and
reduce the response time when there is a loss of communication with the
cloud. This processing distribution gives autonomy to the SmartThings
to process data from Sensors and its users’ direct obtained. That, in turn,
lowers Level 2 latency. Moreover, it is possible to extend this autonomy
if the central AI allows a partially distributed management under its
supervision. That is, things are directly connected to other things
without the intervention of the SmartGateway. That also lowers Level 2
latency. However, this work will not use this type of connection.

AI-Interface: This interface is made to transport the information
required by the AI between 3 different processing levels and coordinate
their priority. These levels are communicated through DFSP messages,
specifically the COMPUTING message. Every time a user uses an object,
the internal AI stores the information (Level 1) and processes them to
statistically learn which resources are commonly used and what purpose
they are used. It then uses the interface to send the information to the
next level of processing. This information travels through the DFSP
messages and allows the centralized AI to build a database of all con-
nected objects’ features through the following profiles of features,
Functions, Services, Resources, and Capabilities. The centralized AI in-
forms the connected objects using COMPUTING messages about the
number of features and the order they should be sent.

Pre-processing: This event occurs before sending the features to the
Smart Gateway. The features’ data is organized according to the speci-
fications of the central AI. Some of them are converted to binary data
types to reduce the payload’s size and sent in JSON format. Further-
more, there may be no coincidences between the manufacturer’s fea-
tures concerning those requested by the central AI. Therefore, it
transmits the order of the most relevant features and a translation table.
With this table, the text is processed, and the AI of the object only returns Fig. 1. IoT Stack SmartArchitecture.

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

5

binary values corresponding to whether the feature exists or not. In turn,
if the feature is a text value returns the corresponding number assigned
in the table. The rest of the features with integer or decimal values return
this value with the name feature associate.

On the other hand, the object’s AI can learn which features have been
accepted correctly in each request and improve this table. In addition to
this, the object’s AI can pre-process data related to user preferences
based on its use and create different profile users.

3.4. Collaborative workgroups

The literature reviewed in Section 2 shows that some group-based
networks are grouped according to something in common. E.g., groups
of nodes share the same type of resource, function, relations, topology,
data, interconnection technology, bandwidth, route, capacities, pa-
rameters. In other words, this type of groupings only select elements of
the same type. In the case of grouping by services, an element of a group
could not contribute to other groups because they do not have the same
service. On the other hand, in this proposal, each object is analyzed and
classified within a group if the features related to its resources, capac-
ities, and functions, can help other objects to fulfill a service. Moreover,
they can collaborate in one or several workgroups. In other words, this
proposal, based on collaborative workgroups, are groups of objects that
share a common work to serve a user. In this sense, the AI can decide
which group to assign an object to and coordinate its intervention to
collaborate within the group, measuring its percentage of participation
and its degree of importance. The work to be done by each group is
previously characterized by the IoT-Gateway’s AI to fulfill a service.
These services are defined from interprets’ the object’s AI’s data
collected about its users’ lifestyle habits. Our goal is to automatically let
any new object join the IoT network and serve the users without their
intervention, just Plug-and-Play (PnP).

3.5. Network model

Let U be the universe of Smart IoT-Networks (SmartHome, Smar-
tOffice, SmartFactories, SmartCity), connected through clouds. Ac-
cording to the design of Fig. 2, we will model the case of Smart Home.
Where B and C are two disjoint sets (different networks) connected
under the same architecture. The B set spans layers 1 to 4 of the archi-
tecture while C set is located in layer 5.

The B set is defined as a Wireless Local Area Internet of Things
Network (IoT-WLAN) like a Smart Home or any other like a Smart City
with this same architecture, which can be defined and mathematically
modeled as follows. Let B = (W, λ, E) be a network of connected objects
(shown in Fig. 2), where W is the set of objects, λ is the set of their ca-
pacities, and E is the set of links between objects. All this collection of
sets and subsets are distributed in the different layers of the architecture
(shown in Fig. 1).

Fig. 3 shows the connected objects according to the network shown
in Fig. 2. Nodes are grouped into sets and subsets. Here, W = {b0, b1, b2,
…, bn}, where bi represents the i-th object before assigning it a

Fig. 2. Architecture of smart IoE proximity networks with centralized management.

Fig. 3. IoT-Network model workgroups-based.

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

6

workgroup and a layer (li). Wi represents the subsets called workgroups
and Wc the nodes that are not within a group. bi could be in two different
groups, then the workgroups are not disjoint sets.

Considerations:

1 (n + 1) it is the total number of objects since b0 is the only IoT-
Gateway node within the network, and where all other nodes are
connected to. Then the equation given for W is shown in Eq. 1, where
m is the total number of subsets.

W =

(

∪
m

i=1
Wi

)

∪ WC (1)

It can also be noted that:

n + 1 =
⃒
⃒WC

⃒
⃒+

⃒
⃒
⃒ ∪

m

i=1
Wi

⃒
⃒
⃒ (2)

As the IoT-Gateway node (b0) will be part of all subsets Wi, it is clear
that:

∩
m

i=1
Wi ≥ 1 (3)

1 Initial working conditions are pre-established from the design shown
in Fig. 2. It assumes that there are already three workgroups and that
the objects are organized in the architecture shown in Fig. 1. Under
these conditions, it is possible to characterize each of the objects and
structure a dataset used to find the best classifier.

In Fig. 3, these groups are made up of heterogeneous objects (bi)
called nodes and whose only similarity will be based on the degree of
collaboration to attend a service. The dataset obtained contains the
features of each node’s functions and services previously classified
within a workgroup and with a role assigned according to the archi-
tecture layer. With this dataset, when entering a new instance, bi will be
assigned as Ci, Gi, AIAi, Thi, or Si according to the layer, and to a wi
according to the workgroup.

Whereby is defined:

- IoT-Gateway: b0 = G0, keeps network management.
- ei ∈ E, where e0 is the connection between set B and C.
• Objects connected in the network:

- nodes: bi ∈ W = {b1, b2, b3, …, bn}.
- feature: fi ∈ F = { f1, f2, f3, …, fn}.
- function 1: f(W) = { f:W →{0, 1}}.
• Register of features in a dataset:

- class:C j ∈ C = {C 1, C 2, C 3, …, C n}.
- dataset: di ∈ D = {d1, d2, d3, …, dn}, where di = { f1(bi), f2(bi), fj(bi),

…, fn(bi), C j}.
- function 2: f(D) = { f: D → C}, such that each di is assigned to a class C

j.

F is defined as a finite set of features related to a node and predefined
in a dataset structure. Therefore features of a node (di) are obtained
through the feature function f: W → {0, 1}, where fj(bi) = 1, it means that
it has these features, otherwise fj(bi) = 0. The di indicates the i-th node
(bi) data register, each characterized with fj(bi) and using to C j as class
features.

To achieve that an ML model assigns a node to a group, and a layer
through its features, it is necessary to find an ideal way to classify it
through a function f: D → C such that each fj(bi) is assigned to a C j class.

f: D → C could be a K-Nearest Neighbor (K-NN), a K-Means, a Neural
Network, a Multi-Layer Perceptron (MLP), a Decision Tree (DT), a model
based on Discriminant Analysis, or a Gaussian Naive Bayes (GNB) or any
other.

Given a collection of registers of D, each register contains a set of
variables (features) that define a profile and will be denoted by Xp =

[f1(bi), f2(bi), f3(bi), …, fk(bi)], with an additional variable (feature) of
class that will be denoted by y = [C j]. Therefore, the register could be
rewritten as di = {(X1, C 1), …, (Xi, C j), …, (Xn, C n)}.

In a K-NN classifier, dataset DK
X, has been classified previously uti-

lizing like training matrix (XTn, C Tn) through the class labels called
workgroup and layer. This classification is based on the distance be-
tween the K neighbors with similar features. When a new instance enters
the system, it is assigned to a group and an architecture layer. The
standard distance for this classifier is Euclidean (de), but others can also
be used depending on the data type. In the case of boolean values, it is
possible to use the Manhattan distance (dM) and others as Chebyshev
distance (dCh) and Minkowski distance (dMk).

If a node’s features are present in one or more sets, it uses the simple
matching coefficient (SMC) or the Jaccard index (IJ). If there is a node at
the intersection between sets, its features (functions, services, resources,
and capabilities) are shared. SMC encodes 1 and 0 if one feature is
present or absent in both sets, while IJ only encodes when the feature is
present. For binary data types 1 and 0, SMC is the most appropriate as it
obtains a better measure of similarity and more computationally
efficient.

Once the system has trained with N cases for DK
X, the ML can predict

how it will classify the new instance depending on the distance of its
features between K neighbors.

Fig. 7 shows how some nodes of Fig. 4 would look organized by
groups and layers.

3.6. Algorithms implementation

Below are the algorithms implemented in the simulations and the
time to compute it. Each algorithm and procedure preexisting in [25,
26], was taken and modified using the previous equations.

The running time or time complexity is estimateed based on the
system runs any of these algorithms [26]. This running time is shown in
Table 1.

For the proper run of the algorithm, it is necessary to consider that
there is a dataset structure with four feature profiles (Xp) in the IoT-
Gateway (G0). In other words, all node features are divided into four
profiles. Each profile is delimited by a specific number of features and a
classifier class. These are extracted from the node through the
ANNOUNCEMENT or DISCOVERY messages, using the FUNCTION,
SERVICES, RESOURCE, and CAPACITY profile sub-messages. The data
obtained through each message is organized and stored in the dataset.

Fig. 4. IoT-Network model workgroups-based.

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

7

The total structure of a dataset register would be as follows, di =
{(X1, C 1), (X2, C 2), (X3, C 3), (X4, C 4)}. To realize the grouping of the
objects and classify a new object in one of these groups, only necessary
to work on a dataset made up of the profiles of functions and services. So
the dataset for grouping only uses the first two segments defined like
this: di = {(X1, C 1), (X2, C 2)} and for routing the last two segments
defined like this di = {(X3, C 3), (X4, C 4)}. The class label for C 1 is
“workgroups”, and forC 2 it is “layer”.

Fig. 5 shows the flowchart of the ML classifier. The G0 establishes an
event listener, waiting for the connection of a new object. When there is
a “new object” within the network, this must announce its features using
the “features number” and the “features sequence” that the AIs have
previously exchanged. In turn, it activates a timeout of 10 sg. If the new
object is not announced, the G0 sends a DISCOVERY message. In both
cases, the messages extract the object’s features, and then the ML pro-
cesses them. Once it completes the features’ register, the ML classifies
the object into a workgroup and a layer.

The following training methodology was used for each ML classifier.
It was taken n = 54 different objects and features about their functions
and services were extracted. X1 = 20 for the functions profile and X2 =

10 for services. Then they were classified into three test groups (m=3)
with (C 1) and in an architecture layer (C 2). That is, the input values of
the classes function are initially set by default. The values of C 1 are set as
{1, 2, 3} representing {w1, w2, w3} respectively. The C 2 values are set to
{1, 2, 3, 4, 5} representing the layer {l1, l2, l3, l4, l5} respectively. With

this dataset previously-stored and predefined, each ML is trained.
Table 2 shows the parameters used to train each of the ML classifiers.

Depending on the classifier, the parameters change and are adjusted
according to its operating structure. However, some parameters are
common to all classifiers, like input nodes, workgroups number and it-
erations’ number. Table 3 indicates the parameters’ notation be used in
the algorithm and its corresponding meaning.

Data preprocessing and standardization of the dataset are very
important since it will get less accurate predictions when using a ma-
chine learning estimator. In the K-NN’s case, the scaler used was
“MinMaxScaler” the rest of the classifiers used “StandardScaler.”

As shown in the flowchart, when starting the central AI, this already
contains an ML that has been previously trained with a predefined
dataset, which was selected for its high percentage of accuracy in the
tests. This ML is ready to classify a new object by characteristics in a
working group (Algorithm 2) and an architecture layer (Algorithm 3).
Then, it is updating the new information in the dataset (Algorithm 1)
and stores it.

Algorithm 1 updates the dataset’s information hosted in G0 when a
new node (bi) is connected, or due to a change in the network, e.g., a
node is turned on or off. Therefore this algorithm, each time a DFSP
message arrives, updates the dataset.

Table 1
Time Complexity.

Classifiers Time complexity

K-NN O(n⋅d + n⋅K)
K-Means O(n⋅K⋅d)
Radial Basis Neural Networks (RBNN) O(n⋅K⋅D)
Support Vector Machines (SVM) O(n2 ⋅ |F|)
Decision Tree (DT) O(|X|⋅|F| log |F|)
Gaussian Naive Bayes (GNB) O(|X|⋅|F|) + O(|C |⋅|F|)

Fig. 5. Flowchart of the ML classifier.

Table 2
Parameters used to train different classifiers.

Classifiers Parameters n = 54, m = 3, Iterations’ number =100

K-NN K=3, metric=‘chebyshev’, n_jobs=100
SVC gamma=2, kernel=‘rbf’, probability=True, C=1
GP 1.0 * RBF(1.0)
DT max_depth=5
RF max_depth=5, n_estimators=10, max_features=1
MPL alpha=1, max_iter=1000
AB n_estimators=50, learning_rate=1.0, algorithm=‘SAMME.R’
GN var_smoothing=1e-09
QDA store_covariance=False, tol=0.0001

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

8

Algorithm 2 classifies a new instance di within a group wi in the
network through any classifier from Table 1 or any other with high
accuracy. This algorithm begins by reading the predefined table and
training the ML. Read the first two profiles from the dataset and use the
class feature to start the training. Then the dataset is divided into
training and tests, taking 75% and 25%, respectively. The next step is to
normalize the data and use an ML model. The model with the highest
accuracy will be selected for further training and implementation. It will
evaluate the features of bi and assign it to a workgroup (wi).

Algorithm 3, like Algorithm 2, classifies a new instance di in an ar-
chitecture layer through any classifier in Table 1 or any other with high
accuracy. Steps 1 through 14 are similar to Algorithm 2, except that use
class C 2. In step 16, the algorithm renames the identifier of the object

according to the layer.
Figure 6 shows the DFSP datagram and the messages used in Algo-

rithm 1 to update the feature dataset.

4. Performance test

This section provides the performance test. The tests aim to observe
how the objects behave under this architecture using the algorithms and
the proposed model.

The idea is that the conventional router in a home will be replaced by
an IoT-Gateway, with the ability to support AI, routing, grouping,
storage, management, and hosting of services. These include hosting a
Broker for M2M connections and allowing reprogramming to accom-
modate a ML classifier. However, the scope of the tests is only limited to
grouping based on classification-oriented algorithms.

4.1. Implementation of the devices

The development of this proposal involves the use of single-board
computers (SBC) such as the Raspberry Pi 3 Model B+ (RPi3) [21].
Each object in this proposal between layers 2 and 4 have been imple-
mented with an RPi3 device, except for the Cloud and Sensor layers. In
layer 1, the sensor devices are implemented on a Programmable
System-on-Chip (PSoC) as the ESP8266-01, which is integrated with a
microcontroller and a Wi-Fi network module or is also used a WIFI LoRa
868 (V2) board [27], to implement a sensor.

4.2. Considerations for the simulations

Since it is not possible to modify a wireless router in a house to
include network management capabilities with this architecture, it is
used an RPi3 to replace it. In this way, it is possible to program all the
algorithms, modify them, and adjust them as often as necessary to
achieve good tests. Therefore the RPi3 will be the IoT-Gateway, imple-
mented as a Wi-Fi router with expanded capabilities, and adjusted to this
architecture’s operation. Among these capacities are the different IoT-
Technologies of interconnection it can handle and the different IoT-
Protocols with which it can communicate. However, we will only use

Table 3
List of parameter’ notations and its meaning.

Notation Meaning

n_neighbors (K) Number of neighbors.
metric The distance metric to use for the tree
n_jobs The number of parallel jobs to run for neighbors search.
gamma Kernel coefficient.
kernel Specifies the kernel type.
probability Probability estimates.
C Regularization parameter.
RBF The kernel specifying the covariance function.
max_depth The maximum depth of the tree.
n_estimators The number of trees in the forest.
max_features The number of features to consider.
alpha Regularization term.
max_iter Maximum number of iterations.
learning_rate Learning rate.
SAMME.R Real boosting algorithm.
var_smoothing Variances for calculation stability.
store_covariance Storage of covariance matrices.
tol Absolute threshold for a singular value to be considered

significant.

Algorithm 1
Updating dataset {D}.

Input: DFSP messages over any M2M protocol.
Process:
1. Update dataset {D}.
2. Function ← ANNOUNCEMENT [X1, C 1]
3. Services ← ANNOUNCEMENT [X2, C 2]
4. D ← { di = X1 + X2, C 1 + C 2}.
Output: Updated dataset for two feature profiles {D}.

Algorithm 2
Creating collaborative workgroups (AI).

Input: dataset { D}, di

Process:
1. Read and load to { D}.
2. X ← [X1 + X2].
3. y ← [C 1].
4. Splitting the dataset into the Training set and Test set.
5. X_train, y_train ← 75% of the D for train.
6. X_test, y_test ← 25% of the D for test.
7. Normalizer, scaler and transform the data
8. X_train ← scaler (X_train)
9. X_test ← scaler (X_test)
10. Set fitting training classifiers (Using Table 1).
11. Set the metric according to the selected classifier.
12. Calculate the predictor accuracy and error.
13. Print accuracy of the classifier on training and test.
14. While accuracy ≥ 80% do
15. For i=1 to m do
16. wi ← classifier.predict(X).
17. End for
18. End while.
Output: New node assigned to a workgroup (wi).

Algorithm 3
Allocation in architecture layer (AI).

Input: dataset { D}, di

Process:
1. Read and load to { D}.
2. X ← [X1 + X2].
3. y ← [C 2].
4. Splitting the dataset into the Training set and Test set.
5. X_train, y_train ← 75% of the D for train.
6. X_test, y_test ← 25% of the D for test.
7. Normalizer, scaler and transform the data
8. X_train ← scaler (X_train)
9. X_test ← scaler (X_test)
10. Set fitting training classifiers (Using Table 1).
11. Set the metric according to the selected classifier.
12. Calculate the predictor accuracy and error.
13. Print accuracy of the classifier on training and test.
14. While accuracy ≥ 80% do
15. l ← classifier.predict(X)
16. Switch(l)
17. case 1:
18. Rename(bi) ← Si

19. case 2:
20. Rename(bi) ← thi

21. case 3:
22. Rename(bi) ← AIAi

23. case 4:
24. Rename(bi) ← Gi

25. End Switch
26. End while.
Output: New node assigned to a layer (l).

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

9

Wi-Fi over TCP protocol in the simulation connection in order to facil-
itate the tests. The RPi3 devices of layer 3 are things and they connect
with the Layer 1 sensors via Wi-Fi and Bluetooth.

The first part of these tests show how the dataset os established in the
IoT-Gateway. It is preconfigured with several features, organized
through feature profiles, and select the features that will act as classi-
fying classes for each profile. Once the dataset is structured, the data
extracted from all the objects connected in the network is stored
following the number and order that the AI requires through the
interface.

In the second part, the capacity λ of the devices on which objects are
developed (Layer 2 to Layer 4) are considered the same because all the
objects are based on an RPi3, and therefore, the capacities are the same.
In the case of the connections from Layer 2 to the boards of the devices in
Layer 1, the capacities are different and lower, so in this case, it is
considered that λ equals the lowest.

The third part tests the grouping algorithm, based on the fact that the
IoT-Gateway establishes routing over TCP. Then the case is considered
that the network is previously established and that the IoT-Gateway is
the one who discovers objects or waits for them to be announced.

This simulation scenario uses a fixed number of objects and groups. It
is designed assuming each object’s participation within a group when
attending a service type. In this way, each object reports the data of its
features under these conditions. This data is stored in the IoT-Gateway’s
dataset. Then, it is analyzed using different classification techniques,
testing each one separately until the classifier is found with the highest
precision in the prediction.

The data obtained from the objects in the simulation are transported
under the architecture’s AI Interface policies. Whereby, our system uses
the DFSP protocol over IoT-Protocols such as MQTT (layer 2 to 4) and
MQTT-SN (layer 1) [28] over TCP for transport. The data is
pre-processed in level 1 according to the centralized AI requirements
and finally processed in level 2; for this case, only level 3 is used when it
is necessary to process very dense information such as sound and
images.

Once the entire network converges and is stable, with a previously
pre-established dataset and the selected classifiers and trained, the

network is finally ready to receive a new object. Therefore, if a “New
object” enters the network, the ANNOUNCEMENT message is activated
and sent through DFSP/MQTT protocol to the IoT-Gateway, or the
opposite, after some time the IoT-Gateway discovers it using the DIS-
COVERY message. In this case, the network is evaluated when the user
places the New Thing observing how the AI assigns it, according to its
features, to a workgroup and the architecture layer.

4.3. Simulators

The simulation was carried out with several simulators such as Cisco
Packet Tracer 7.3, Jupyter [25], and iFogSim [29,30]. Each of them
complements the other.

With Cisco Packet Tracer, the proposed architecture and model was
emulated over an entire network on. This simulator does not have pre-
installed network algorithms in RPi3 as in real implementations, but it
allows programming in Python and Java. It is a great advantage because
it allows modifying and programming the proposed algorithms and
putting the network into operation according to the architecture. It can
simulate a real connection to the cloud (IoT-Platform: Thingspeak) and
capture packets using Wireshark.

With Jupiter, the ML of Table 1 and Table 3 is simulated in Python
language, testing each classifier. The goal is to predict where will be
assigned a new object according to its features of a group given and
previously characterized, depending on whether its features are closest
enough to the group or not. The library used was scikit-learn 0.23.2
[26], together with other important libraries for data preprocessing.

4.4. Testbed

The simulation scenario is organized in groups and layers, and each
group is arranged so that they can collaboratively provide a service. As it
was observed in the network model presented in the previous section, an
object can participate in providing a service in one or more groups.
Therefore, each object in Fig. 7 is labeled with Wi, representing its
participation in each group. With this scenario, the initial data for ML
training is collected.

Fig. 6. DFSP Messages.

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

10

The first test is assumed that the IoT-Gateway connects with Wi-Fi to
all network objects sending data over the DFSP/MQTT protocol. While
the network converges, it storing data in IoT-Gateway, updating the
features dataset pre-established. Then, the number of features versus the
number of objects in the dataset network is previously analyzed. If there
are too many features that are not relevant, this can affect the result.
Therefore, a correlation map is made between all the feature profiles
that define the connected objects’ functions and services. The objective
was to evaluate which features were relevant (they had an average ab-
solute correlation coefficient greater than 0.68) to evaluate the work-
group and layer. With this information, the most representative
variables were selected to perform the classification.

It caused a change and a minimal reduction in the dimensions of the
dataset. The parameters that varied were X1 = 20 decreased to X1 = 14
and X2 = 10 decreased to X2 = 7. It was also observed that the results are
affected by increasing the number of objects in the network. When the
number of objects was increased while maintaining the same number of
feactures, the results improved. Because of a new object added, the
number of registers in the dataset increased from n = 54 to n = 59. In
other words, five new objects were used in the test.

Fig. 8 shows the ML using a classification method based on

discriminant analysis to categorize the three groups. The workgroup
label was used as the classifier class of the discriminant function to make
the prediction. The two discriminant functions with P-values lower than
0.05 are statistically significant with a confidence level of 95.0%.

Fig. 8 shows these workgroups as the collaboration between different
types of objects joined to attend a service by interpreting its features; in
this case, there are three services.

The red squares, blue circles, Xs, and asterisks observed in Fig. 8
shows the objects that belong to different groups. Some of these ele-
ments are very close to each other, which represents their nearness in
their features. It is also observed how some of these features intervene in
one or more workgroups. For this reason, it is seen that in some cases,
objects overlap one over the other, indicating that there is an intercep-
tion between the groups.

The results obtained through the discriminant analysis suggest that it
is possible to obtain better results by applying a classifier based on the
nearness of its features. For this reason, it is initially tested with a K-NN
classifier, and the dataset is evaluated to know what precision will be
when a new object is classified after it reaches the network.

The best choice of K depends fundamentally on the data; generally,
large values of K reduce the effect of noise on the classification but create
boundaries between similar classes. Fig. 9 shows that with values K = 3,
greater precision is achieved, so it is selected for all tests.

The four distance metrics used to test the K-NN model are defined
below: de, dM, dCh, dMk. The dataset was divided into 75% for the
training model and 25% for the testing model. It is then applied data
preprocessing and standardization of the dataset with “MinMaxScaler”
and “StandardScaler.”

4.5. To select the best configuration of the K-NN classifier, we have
realized different tests

First, it is tested with “StandardScaler” and all the distances in metric
parameter, and then with “MinMaxScaler.” It is observed that with
“StandardScaler,” most results were high. However, using “Min-
MaxScaler” with metric = dCh gives the best result for the “workgroups”

Fig. 7. Simulation scenario organized by groups and layers.

Fig. 8. Discriminant Analysis.

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

11

class. On the other hand, with the “layer” class, each parameter’s best
result give using “StandardScaler.”

Fig. 10 shows the best results for the different tests using K-NN for
two classes. The experiment is performed 100 times for each combina-
tion of parameters.

The running time that the algorithm takes to learn the parameter in
the two best results in Fig. 10 is 0,47 seconds for the “workgroup” class
and 0,44 seconds for the “layer” class. It is run all experiments using a
Python program on a DELL PC with a Core i7 microprocessor and 4 GB
RAM.

Fig. 10 compares the results of different distance metrics for each
classification label. It is observed in the results that the accuracy ≥ 68%
in all the tests, being de and dCh the best. With de is obtain an accuracy =
95% to predict an architecture layer and with dCh an accuracy = 90% to
predict the workgroup.

Fig. 11 shows the error in the previous tests. Results show very low
error for most of the distances evaluated.

As it is observed in Fig. 11 the error rate at K = 3 was 0.14 for most of
the distances, while dCh, which previously showed the best precision for
the workgroups, was 0.23.

The dataset obtained from the network test of Fig. 5 is small in the
number of samples or registers per object. This dataset may have more
features (variables) than objects because they are necessary to describe
functions, services, relations, resources, and each device’s location in
the house. However, it can happen that after a threashold, the perfor-
mance of the model will decrease due to the number of features. If
features are continuously added without increasing the number of
samples, then the space between the features increases and it becomes
more dispersed. Therefore, to adequately process the data and reduce
random variables, it is only considered the main variables using
dimensional reduction methods. That allows it to remove redundant

variables that do not add new information to the dataset and make it
easier to view it.

In order to improve the results of the K-NN classifier, it is applied it
several dimensionality reduction techniques. The reduction tests were
performed for the “workgroup” class with K = 3, metric = de, and 100
iterations.

Fig. 12 shows the Principal Component Analysis (PCA). It identifies
the combination of features and helps examine relations between groups
through the main or most relevant features of the dataset. The orange,
gray, and red points represent the features of each workgroup. Although
it applies a large dimensionality reduction to the dataset, still it is being
observed more features than in the other two figures.

Fig. 13 shows a Linear Discriminant Analysis (LDA). This technique is
used to observe the differences between the groups since classifying can
cause overlapping and the shared features are not appreciated.

Fig. 14 shows a Neighborhood Components Analysis (NCA). It tries
to find a feature space to improve accuracy.

In any case, none of the three figures shows a clustering of the data
that is visually meaningful, like in HYPERLINK \l "fig0008" Fig. 8.

The results of these reduction techniques PCA, LDA, and NCA applied
to the K-NN model are compared with those obtained in Fig. 10. It is
observed that using PCA and NCA, the accuracy is improved from 0.71
to 0.74. However, the PCA technique even lowered from 0.71 to 0.68.

After realizing the tests, the K-NN classifier with the best results is
selected. We obtained a precision of 0.9 in training and 0.71 for tests
with the workgroup class using dCh. For the layer class, the best results
were obtained using de with a precision of 0.95 in the training and 0.86
in the tests.

K-NN results are now compared with other types of classifiers, which

Fig. 9. Selection the best value of K.

Fig. 10. Comparison of distance metric in a KNN classifier (K=3).

Fig. 11. Comparison of Error Rate in a KNN classifier (K=3).

Fig. 12. PCA, K-NN (K=3) Test accuracy = 0,67.

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

12

use different techniques and metrics. Fig. 15 shows a comparative graph
with the other classifiers.

Fig. 15 compares the accuracy obtained between the classifiers K-
NN, SVM, Gaussian Process (GP), Decision Tree (DT), Random Forest
(RF), MLP, AdaBoost (AB), Gaussian Naive Bayes (GNB), and Quadratic
Discriminant Analysis (QDA). In the results of the figure, it is observed
that the classifier with the lowest accuracy was QDA and the highest was
MPL. However, it is also appreciated that the K-NN classifier hasan
average value like the other classifiers. The results obtained for the
workgroup class with Neuronal Net MPL were 100% accurate in the
prediction and 90% for the layer class.

Furthermore, the training time for KNN = 0,44 seconds, SVC = 0,043
seconds, GP = 0,675 seconds, DT= 0,049 seconds, RF= 0,7 seconds,
MPL= 0,5 seconds, AB= 0,8 seconds, GNB= 0,5 seconds, QDA= 0,8
seconds.

Fig. 16 shows each classifier’s error rate, and it can be seen that the
MPL classifier has the lowest error of all (workgroup class) compared to
the rest. In addition, the class layer for the same classifier has no value.

Fig. 17 shows the cross-validation technique applied to the models
used. In this case, it is using a cross-validation process with ten in-
teractions. This technique just was applied to workgroup class for all
classifiers.

The figure shows that the best classifier is MPL since the accuracy
value (orange line) is the highest, and the upper and lower error margins
are lower than the rest. However, the precision depends on the test and
training data sets, which may be biased, so cross-validation is a better
approximation. The difference between some values compared with
those obtained in Fig. 15 probably is due to inadequate data randomi-
zation. Therefore, rather than just measuring accuracy, efforts should be
focused on improving the algorithm. If the algorithm is improved, the
accuracy will also improve compared to previous approaches.

5. Conclusion

In a conventional WLAN, a WiFi router can not intelligently manage
Internet access, storing datasets, host an IoT-Broker, or support AI. For
this reason, it is proposed the use of low-cost SBC and freely developed
boards and convert them into programmable IoT-Gateways to let them
use the algorithms proposed in this paper. In this way, the objects
connected can send information to AI through IoT-Protocols using this
architecture.

The K-NN classifier, being a simple method, is ideal for classifying
the most similar data points, and it is also easy to implement, although
compared to the other classifiers, it was not the best. However, it
remained within the average results. The tests showed that the MPL
classifier is the best to classify both classes. The obtained results were
very high compared to the other classifiers. It is necessary to continue
testing other classifiers for the group creation algorithm with ML.
However, the tests showed that the architecture design widely allows
the use of ML for its operation.

It is expected to perform architecture tests on a real network, testing

Fig. 13. LDA, K-NN (K=3) Test accuracy = 0,74.

Fig. 14. NCA, K-NN (K=3) Test accuracy = 0,74.

Fig. 15. Comparison of accuracy with different classifier. Fig. 16. Error Rate’s Comparison each classifier.

P.L. González Ramírez et al.

Computer Networks 186 (2021) 107745

13

the clustering algorithm used in this simulation and observing its
behavior when a new object joins the network. Thus, larger input data
sets could be handled by further improving the classifier’s results, e.g.,
proposing a recurrent learning classifier such as RBNN or a deep
learning technique.

Declaration of Competing Interest

None.

Acknowledgments

This work has been partially supported by the “Ministerio de Econ-
omía y Competitividad” in the “Programa Estatal de Fomento de la
Investigación Científica y Técnica de Excelencia, Subprograma Estatal
de Generación de Conocimiento” within the project under Grant
TIN2017-84802-C2-1-P. This work has also been partially supported by
European Union through the ERANETMED (Euromediterranean Coop-
eration through ERANET joint activities and beyond) project
ERANETMED3-227 SMARTWATIR. At the Univeridad Central
(Colombia), to the Smart City work team of the MAXWELL research
group, for their special interest in generating new contributions to the
networks (IoT & IoE).

References

[1] M. Chen, U. Challita, W. Saad, C. Yin, M. Debbah, Artificial neural networks-based
machine learning for wireless networks: a tutorial, IEEE Commun. Surv. Tutorials
PP (c) (2019) 1, https://doi.org/10.1109/COMST.2019.2926625.

[2] K.A.P. da Costa, J.P. Papa, C.O. Lisboa, R. Munoz, V.H.C. de Albuquerque, Internet
of Things: a survey on machine learning-based intrusion detection approaches,
Comput. Netw. 151 (Mar.) (2019) 147–157, https://doi.org/10.1016/j.
comnet.2019.01.023.

[3] Telecommunication Standardization Sector Of ITU, “Recommendation ITU-T
Y.2060,” Overview of the Internet of things, 2012. [Online]. Available: http
s://www.itu.int/itu-t/recommendations/rec.aspx?rec=Y.2060. [Accessed: 10-Jun-
2020].

[4] V. Gazis, A survey of standards for machine-to-machine and the internet of things,
IEEE Commun. Surv. Tut. 19 (1) (2017) 482–511, https://doi.org/10.1109/
COMST.2016.2592948. Institute of Electrical and Electronics Engineers Inc.

[5] J. Serra, L. Sanabria-Russo, D. Pubill, C. Verikoukis, Scalable and flexible IoT data
analytics: when machine learning meets SDN and virtualization, in: 2018 IEEE
23rd International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2018, pp. 1–6, https://doi.org/
10.1109/CAMAD.2018.8514997, 2018-Septe.

[6] ETSI, “Machine-to-Machine communications (M2M) - functional architecture
technical specification,” TS 102 690 V2.1.1, 2013.

[7] F.A. Gomide, Redes neurais artificiais para engenharia e ciências aplicadas: curso
prático, Sba Control. Automação Soc. Bras. Autom. 23 (5) (2012) 649–652, https://
doi.org/10.1590/s0103-17592012000500011.

[8] S. Haykin, Neural networks and learning machines third edition, vol. 40, no. 6.
2001.

[9] K. Pardini, J.J.P.C. Rodrigues, O. Diallo, A.K. Das, V.H.C. de Albuquerque, S.
A. Kozlov, A smart waste management solution geared towards citizens, Sensors
(Switzerland) 20 (Apr. (8)) (2020) 2380, https://doi.org/10.3390/s20082380.

[10] P.L. Gonzalez Ramirez, J. Lloret, M. Taha, J. Tomas, Architecture to integrate IoT
networks using artificial intelligence in the cloud, in: 2018 International
Conference on Computational Science and Computational Intelligence (CSCI),
2018, pp. 996–1001, https://doi.org/10.1109/CSCI46756.2018.00193.

[11] M.M. Hassan, M.R. Hassan, S. Huda, V.H.C. de Albuquerque, A robust deep
learning enabled trust-boundary protection for adversarial industrial IoT
environment, IEEE Internet Things J. 8 (8) (2020) 1, https://doi.org/10.1109/
JIOT.2020.3019225. –1.

[12] D. Kimovski, H. Ijaz, N. Saurabh, R. Prodan, Adaptive nature-inspired fog
architecture, in: 2018 IEEE 2nd International Conference on Fog and Edge
Computing, ICFEC 2018 - In conjunction with 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, IEEE/ACM CCGrid 2018, 2018,
pp. 1–8, https://doi.org/10.1109/CFEC.2018.8358723.

[13] G.P. Miguel, A Group-based Architecture and Protocol for Wireless Sensor
Networks, Universitat Politècnica de València UPV, 2013.

[14] C. Napoli, G. Pappalardo, E. Tramontana, R.K. Nowicki, J.T. Starczewski,
M. Woźniak, Toward work groups classification based on probabilistic neural
network approach, Lecture Notes in Artificial Intelligence (Subseries of Lecture
Notes in Computer Science) 9119 (2015) 79–89, https://doi.org/10.1007/978-3-
319-19324-3_8.

[15] B. Yao, et al., Applying graph theory to the internet of things, in: Proceedings -
2013 IEEE International Conference on High Performance Computing and
Communications, HPCC 2013 and 2013 IEEE International Conference on
Embedded and Ubiquitous Computing, EUC, Zhangjiajie, 2013, pp. 2354–2361,
https://doi.org/10.1109/HPCC.and.EUC.2013.339, 2014.

[16] K. Batool, M.A. Niazi, Modeling the internet of things: a hybrid modeling approach
using complex networks and agent-based models, Complex Adapt. Syst. Model. 5
(1) (2017) 1–19, https://doi.org/10.1186/s40294-017-0043-1.

[17] G. Fortino, W. Russo, C. Savaglio, Agent-oriented modeling and simulation of IoT
networks, in: Proc. 2016 Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2016 8, 2016,
pp. 1449–1452, https://doi.org/10.15439/2016F359.

[18] H. Yu, X. Xia, Adaptive consensus of multi-agents in networks with jointly
connected topologies, Automatica 48 (8) (2012) 1783–1790, https://doi.org/
10.1016/j.automatica.2012.05.068.

[19] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Antonopoulos,
C. Verikoukis, Online VNF Lifecycle Management in an MEC-Enabled 5G IoT
Architecture, IEEE Internet Things J. 7 (May (5)) (2020) 4183–4194, https://doi.
org/10.1109/JIOT.2019.2944695.

[20] M.G. dos Santos, D. Ameyed, F. Petrillo, F. Jaafar, and M. Cheriet, “Internet of
things architectures: a comparative study,” 2020.

[21] J. Lloret, S. Sendra, P.L. González, L. Parra, An IoT group-based protocol for smart
city interconnection, Commun. Comput. Inf. Sci. 978 (2019) 164–178, https://doi.
org/10.1007/978-3-030-12804-3_13.

[22] J. Lloret, M. Garcia, J. Tomas, J.J.P.C. Rodrigues, Architecture and protocol for
intercloud communication, Inf. Sci. (Ny). 258 (2014) 434–451, https://doi.org/
10.1016/j.ins.2013.05.003.

[23] P.L.G. Ramirez, M. Taha, J. Lloret, J. Tomas, An intelligent algorithm for resource
sharing and self-management of wireless-IoT-gateway, IEEE Access 8 (2020)
3159–3170, https://doi.org/10.1109/ACCESS.2019.2960508.

[24] P. Gonzalez, J. Lloret, J. Tomas, O. Rodriguez, M. Hurtado, IoT-WLAN proximity
network for potentiostats, in: 2020 Fifth International Conference on Fog and
Mobile Edge Computing (FMEC), Paris, France, 2020, pp. 94–99, https://doi.org/
10.1109/FMEC49853.2020.9144776.

[25] Jupyter Org, “Project Jupyter | Jupyter Software,” 2020. [Online]. Available: http
s://jupyter.org/. [Accessed: 12-Feb-2020].

[26] F. Pedregosa, et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res.
12 (85) (2011) 2825–2830.

[27] “WIFI LoRa 32 (V2) – Heltec automation,” 2019. [Online]. Available: https://hel
tec.org/project/wifi-lora-32/. [Accessed: 11-Mar-2020].

[28] E. Longo, A. E. C. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni, “MQTT-ST:
a spanning tree protocol for distributed MQTT brokers,” 2019.

[29] H. Gupta, A.V. Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: a toolkit for modeling and
simulation of resource management techniques in internet of things, edge and fog
computing environments, Softw. Pract. Exp. 47 (Jun. (9)) (2016) 1275–1296,
https://doi.org/10.1002/spe.2509.

[30] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, H. Ijaz, A job scheduling
algorithm for delay and performance optimization in fog computing, Concurr.
Comput. Pract. Exp. 32 (Apr. (7)) (2020), https://doi.org/10.1002/cpe.5581.

Fig. 17. Comparison of models with the cross-validation technique.

P.L. González Ramírez et al.

https://doi.org/10.1109/COMST.2019.2926625
https://doi.org/10.1016/j.comnet.2019.01.023
https://doi.org/10.1016/j.comnet.2019.01.023
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=Y.2060
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=Y.2060
https://doi.org/10.1109/COMST.2016.2592948
https://doi.org/10.1109/COMST.2016.2592948
https://doi.org/10.1109/CAMAD.2018.8514997
https://doi.org/10.1109/CAMAD.2018.8514997
https://doi.org/10.1590/s0103-17592012000500011
https://doi.org/10.1590/s0103-17592012000500011
https://doi.org/10.3390/s20082380
https://doi.org/10.1109/CSCI46756.2018.00193
https://doi.org/10.1109/JIOT.2020.3019225
https://doi.org/10.1109/JIOT.2020.3019225
https://doi.org/10.1109/CFEC.2018.8358723
http://refhub.elsevier.com/S1389-1286(20)31329-3/sbref0013
http://refhub.elsevier.com/S1389-1286(20)31329-3/sbref0013
https://doi.org/10.1007/978-3-319-19324-3_8
https://doi.org/10.1007/978-3-319-19324-3_8
https://doi.org/10.1109/HPCC.and.EUC.2013.339
https://doi.org/10.1186/s40294-017-0043-1
https://doi.org/10.15439/2016F359
https://doi.org/10.1016/j.automatica.2012.05.068
https://doi.org/10.1016/j.automatica.2012.05.068
https://doi.org/10.1109/JIOT.2019.2944695
https://doi.org/10.1109/JIOT.2019.2944695
https://doi.org/10.1007/978-3-030-12804-3_13
https://doi.org/10.1007/978-3-030-12804-3_13
https://doi.org/10.1016/j.ins.2013.05.003
https://doi.org/10.1016/j.ins.2013.05.003
https://doi.org/10.1109/ACCESS.2019.2960508
https://doi.org/10.1109/FMEC49853.2020.9144776
https://doi.org/10.1109/FMEC49853.2020.9144776
https://jupyter.org/
https://jupyter.org/
http://refhub.elsevier.com/S1389-1286(20)31329-3/sbref0026
http://refhub.elsevier.com/S1389-1286(20)31329-3/sbref0026
https://heltec.org/project/wifi-lora-32/
https://heltec.org/project/wifi-lora-32/
https://doi.org/10.1002/spe.2509
https://doi.org/10.1002/cpe.5581

Computer Networks 186 (2021) 107745

14

PEDRO LUIS GONZÁLEZ RAMÍREZ received a degree in Elec-
tronic Engineering at Universidad de Pamplona, Colombia, in
2000. M.Sc.-Ing degree in Electronic Engineering at Pontifícia
Universidad Javeriana, Colombia in 2012. Currently Ph.D.
student in Telecommunication at the Polytechnic University of
Valencia (Spain). He is a Cisco Certified Network Professional
Instructor. He has a special interest in android mobile appli-
cation development, research in Telecommunications Net-
works, Internet of Things (IoT), and Internet of Everything
(IoE), design and implementation of Architectures, Protocols,
and Algorithms for IoT networks. He has been a paper reviewer
and session chair at some international conferences and is a
Lecturer with the Department of Electronic Engineer, Uni-
versidad Central, Colombia. He is also a member of the
Research Group Maxwell of Universidad Central and a Junior
Researcher in MinCiencias, Colombia.

JAIME LLORET (Senior Member, IEEE) received the B.Sc. and
M.Sc. degrees in physics, in 1997, the B.Sc. and M.Sc. degrees
in electronic engineering, in 2003, and the Ph.D. degree (Dr.-
Ing.) in telecommunication engineering, in 2006. He worked as
a Network Designer and an Administrator in several enter-
prises. He is currently an Associate Professor with the Poly-
technic University of Valencia. He is a Cisco Certified Network
Professional Instructor. He is the Chair of the Integrated Man-
agement Coastal Research Institute (IGIC), and he is the Head
of the Active and Collaborative Techniques and Use of Tech-
nologic Resources in the Education (EITACURTE) Innovation
Group. He was the Director of the University Master ‘‘Digital
Post Production,’’ from 2012 to 2016. He is the Director of the
University Diploma ‘‘Redes y Comunicaciones de Ordena-
dores.’’ He has authored 22 book chapters and has more than
480 research articles published in national and international
conferences, and international journals (more than 220 with
ISI Thomson JCR). He is an ACM Senior Member and IARIA
Fellow. He was the Vice-Chair for the Europe/Africa Region of
Cognitive Networks Technical Committee (IEEE Communica-
tions Society), from 2010 to 2012, and the Vice-Chair of the
Internet Technical Committee (IEEE Communications Society
and Internet society), from 2011 to 2013. He was the Internet
Technical Committee Chair of the IEEE Communications So-
ciety and Internet society, from 2013 to 2015. He has been the
General Chair (or Co- Chair) of 57 International workshops and
conferences. He is currently the Chair of theWorking Group of
the Standard IEEE 1907.1. Since 2016, he has been the Spanish
Researcher with highest H-index in Telecommunications jour-
nal list according to Clarivate Analytics Ranking. He has been
involved in more than 450 program committees of interna-
tional conferences, and more than 150 organization and
steering committees. He has led many local, regional, national,
and European projects. He is the Editor-In-Chief of Ad Hoc and
SensorWireless Networks (with ISI Thomson Impact Factor),
the international journal Networks Protocols and Algorithms,
and Interna- tional Journal of Multimedia Communications.
Moreover, he is an advisory board member of International
Journal of Distributed Sensor Networks (both with ISI Thom-
son Impact factor), and he is the IARIA Journals Board Chair
(eight journals). Furthermore, he is (or has been) an Associate
Editor of 46 international journals (16 of them with ISI
Thomson Impact Factor). He has been the Co-Editor of 40
conference proceedings and a Guest Editor of several interna-
tional books and journals.

JESÚS TOMÁS was graduated in Computer Science in 1993 at
Polytechnic University of Valencia, getting the best ratings. He
finished his Doctoral Thesis in 2003. He worked as software
programmer in several enterprises and as a freelance. From
1993, he is an associate professor at Polytechnic University of
Valencia. He is member of the Integrated Management Coastal
Research Institute. His research focuses on statistical trans-
lation, artificial intelligence, pattern recognition and sensors
networks. He has published multiple articles in national and
international conferences and has multiple articles in interna-
tional journals (more than 17 of these are included in the
Journal Citation Report). He has been involved in several
research projects related to public and private pattern recog-
nition and artificial intelligence applied to multiple subjects (4
of them as principal investigator). He is the director of Uni-
versity Master Develop of mobile applications.

MIKEL FERNANDO HURTADO-MORALES: Chemist, Ms.c,
Chemical Thermodynamics (Universidad Nacional de
Colombia), Ms.c, Materials Science and Nanotechnology (Zar-
agoza University and Aragon Institute of Nanoscience), PhD,
Solid State Chemistry (Universidad Nacional de Colombia and
Helmholtz Zentrum Berlin), PostDoc in Nanomaterial Physics
(Los Andes University and BASF). Associate Professor at Uni-
versidad Central. Group Leader SEM2 Surface, Energy and
Modern Materials, Electronic Engineering Department Uni-
versidad Central Bogotá Colombia since 2014. Solid State
Physics and Nanosystems, Nanomaterials and Modern Appli-
cations, and Flexible and transparent Nanoelectronics lectures.
Senior Researcher by MinCiencias Colombia since 2017.

P.L. González Ramírez et al.

	IoT-networks group-based model that uses AI for workgroup allocation
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Contributions

	2 Related work
	3 Proposal description
	3.1 Problem formulation
	3.2 Architecture proposal
	3.3 Architecture with centralized management
	3.4 Collaborative workgroups
	3.5 Network model
	3.6 Algorithms implementation

	4 Performance test
	4.1 Implementation of the devices
	4.2 Considerations for the simulations
	4.3 Simulators
	4.4 Testbed
	4.5 To select the best configuration of the K-NN classifier, we have realized different tests

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

