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A B S T R A C T   

This paper presents a centralized management architecture model for designing workgroup-based Internet of 
Things (IoT) and Internet of Everything (IoE) networks. The architecture establishes the organization of an object 
according to its functions and capacities in layers. From its model, it is derived the design of the algorithms that 
give the network operation. These algorithms include the multi-protocol communication and interconnectivity 
algorithm, the routing algorithm, the resource sharing algorithm, and the grouping algorithm, all controlled by 
Artificial Intelligence (AI). The grouping algorithm consists of creating collaborative workgroups based on 
Machine Learning (ML) techniques that use the objects’ features to allocating these within a workgroup that 
attends a type of service and within an architecture layer according to its capabilities. The model was tested with 
a simulation that shows the Machine-to-Machine (M2M) interaction between the devices involved in providing a 
service to a user within a Smart Home. This simulation uses an AI hosted within an IoT-Gateway to collect data 
on the features that define a connected object’s functions and services. The extraction of the features is done 
using the Discovery of Functions and Services Protocol (DFSP) transported through an IoT-Protocol. With this 
information, the AI assigns a layer and a workgroup to a new object when it enters the network. The result of 
these tests can be used to know which ML technique has better accuracy.   

1. Introduction 

The Artificial Intelligence (AI) techniques have gained high rele-
vance in recent years since it can be applied in fields previously un-
thinkable. After the information age we live in, we may move on to the 
AI age. This revolution has been possible because Big Data has made vast 
amounts of information available to Machine Learning (ML) techniques 
[1]. On the other hand, the network’s analysis and modeling through 
mathematical theories allow a better understanding of its operation 
while allowing us efficient algorithms or even reaching the optimal one. 
Today, the mathematical models of networks are of great importance 
when considering algorithms and traffic through numbers, allowing ML 
algorithms to analyze these numbers and learn the patterns that will 
infer how they will behave in the future. For this purpose, this paper 
studies the different mathematical theories used in computing and im-
plements the most appropriate ones applied to communication net-
works. The Internet of Things (IoT) is an excellent scenario to apply 
these new technologies and integrate new concepts that will solve au-
tonomy problems in these networks [2]. 

The most widely accepted concept defines IoT-Networks as the 
interconnection of everyday “things or objects” to the Internet [3]. In 
this sense, a local IoT-Network can intercommunicate “objects” through 
an IoT-Gateway between them and the Internet. Most of them differ in 
communication technologies and protocols, and not all are of the same 
type. Whereby some models have been proposed to resolve the inter-
operability of these networks. However, there is still no standard, and it 
is still possible to propose new alternatives. 

In order to achieve interoperability between objects with different 
types of IoT-Protocols on the same network, it is needed a control al-
gorithm to act as an intermediary. It is the function that AI performs in 
the management layer of the architecture within the IoT-Gateway. Some 
of these IoT-Protocols are Machine-to-Machine (M2M) [4] used to 
monitor and control objects. However, by incorporating ML techniques 
[5] into algorithms, we can achieve the desired autonomy, although we 
still have to explore more techniques that allow the same machines to 
communicate autonomously. Therefore, the idea is to leverage and 
modify an M2M protocol [6] and include an autonomous ML controller 
that performs the task of making the network interoperable. This 

* Jaime Lloret 
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controller’s core can be of any type, from a classifier based on neural 
networks [7] to a deep learning system [8]. 

The benefits of objects working in groups allow a user to receive a 
service automatically without worrying about keeping control of the 
activity. For example, in their home, a group of things would maintain 
air quality at normal levels and activate an emergency system when 
detecting any danger to their health. Another case could be when 
someone visits their home, and the door will announce the visit, and it 
will be shown on the screen closest to the user who is at the door. In any 
case, the system will try to solve the problem locally before accessing the 
Internet for any consultation, alarm, or follow up of the user when they 
are away from home through the cloud connection. Many variants of 
these services would be monitored by the IA, continuously learning from 
their user’s activities, and providing increasingly automated services. 

This paper proposes a network model for creating groups in an IoT- 
Network using ML. This model describes the possible relations that a 
connected object can have when it assumes a role (e.g., Thing, Sensor) 
and shares resources, functions, and services in common. The ML learns 
these patterns and establishes relations by creating workgroups, turning 
it into a collaborative proximity network. Possible application scenarios 
are proximity networks in homes, offices, industry, and even smart cities 
[9]. All interconnected through the cloud to provide a service to the 
same user [10], inside or outside their home. 

1.1. Motivation 

The appearance of the Smart IoT-Networks, together with the mas-
sification of objects with AI included (Smart Things), implies a greater 
challenge than required by a conventional data network. Many IoT ob-
jects are activated by the user in these networks through commands, 
either with the mobile phone or an intelligent assistant. On the other 
hand, in Smart IoT-Networks, the objects can be autonomous and create 
their relations. However, no one knows yet how they will behave, since 
there are not yet a significant number of objects working together to 
achieve a common goal. There is very little information about these 
types of networks and how they will work in the future. Therefore, it is 
possible to suppose different scenarios in different ways to propose its 
possible operation. Considering the above, it opens opportunities to 
propose different architectures that support the transport of information 
that an AI requires and solves interoperability between heterogeneous 
objects. 

1.2. Goals 

The main goal is to use the proposed IoT-SmartArchitecture archi-
tecture as the basis for the future design of Smart Networks. However, 
there are no real Smart Network scenarios that provide a suitable 
ecosystem for smart objects. For this reason, it is proposed a possible 
Smart Network scenario on this architecture, assuming that smart ob-
jects will work collectively to provide automatic services to users. 
Therefore, this paper focuses on the algorithm for creating workgroups 
(grouping) in a Smart IoT-Network. In which the Architecture’s AI uses 
an ML classifier with a dataset based on the features extracted from 
different objects. With this information, the classifier assigns a work-
group to a “new object” connecting to the network’s first time. In 
addition to this, it classifies it and assigns it a role in one layer of the 
proposed architecture. Although IoT can be a much broader vision that 
implies a global infrastructure in all aspects, we will only study the cases 
present in proximity networks. Therefore, the test scenario is a Smart 
Home based on wireless technologies due to its ease of simulation. 

1.3. Contributions 

Currently, conventional networks can include everyday objects with 
the ability to connect. However, if the object includes AI, this type of 
network can limit its potential. This paper shows what a Smart Home 

would look like in the future and recreates possible scenarios where 
objects are related to serving users. The above is necessary since the 
proposed architecture is designed to organize objects that include AI. 
Therefore, without scenarios based on an AI’s control, it would not be 
possible to test this architecture. In turn, the obtained algorithms can be 
used in similar applications like Industrial Internet of Things (IIoT) en-
vironments [11], among others. Furthermore, this work shows the Dis-
covery of Functions and Services Protocol (DFSP) protocol’s use over an 
IoT-Protocol and implementing new messages that facilitate AI work on 
the architecture. It also presents the accuracy of different AI techniques 
to classify objects in workgroups, which will help determine which the 
most adequate to apply in Smart IoT-Networks. Finally, it is shown the 
importance of replacing the conventional router with one more 
specialized and higher capacity that keeps the network’s centrality. 

This paper is structured as follows. Section 2 includes the related 
work about groups, architectures, and machine learning. Section 3 for-
mulates the problem and presents the proposal and the network model. 
Section 4 presents the implemented algorithms and the time complexity. 
In Section 5, the performance test, the devices’ implementation, and the 
simulations together with the testbed results. Finally, in Section 6, we 
highlight our conclusion and future work. 

2. Related work 

In this section, it presents the revision of works related to IoT- 
Networks group-based and ML. There are already many group-based 
network models proposed for IoT or sensor networks in the literature. 
However, to highlight this work’s unique contribution, it is necessary to 
study and analyze its operation mechanics. Therefore, it is important to 
review which works include the use of ML within its algorithms and 
what methods had used, and in this way, to know what the evolution of 
IoT-Networks has been in the inclusion of AI to create collaborative 
workgroups. The following are the most relevant selected works that 
show the techniques involved in making grouping, modeling, and 
simulation IoT-Networks and ML. 

D. Kimovski, H. Ijaz, N. Saurabh, and R. Prodan [12] propose an 
architecture called SmartFog, bio-inspired by the human brain. Its 
structure describes through three layers: Cloud Layer, Fog Layer, IoT 
Layer. In the Fog layer, the devices mimic neurons’ function, and syn-
apses correlate with communication channels, and in the IoT layer, the 
devices and sensors represent the sensory nervous system. The groups 
are formed autonomously from a set of fog devices called gateways, 
using machine learning algorithms. For the selection of communication 
gateways or neurons, classification algorithms are used considering 
multiple criteria to group by the same type of function. In this way, 
clusters with similar functionalities are generated that will execute the 
works and tasks requested by the sensor network or from applications in 
the cloud. 

M. Garcia [13] has demonstrated through simulations that making 
groups of nodes in a Wireless Sensor Networks (WSN) improve its per-
formance. The author has proposed creating an architecture based on 
groups, making groups of nodes with the same function. A group has a 
central node that identifies the group and delimits the group, and each 
node has its identifier. Therefore, the proposed architecture allows 
collaboration between groups. Finally, the author concludes that 
collaborative work between nodes group improves performance and 
average delay, avoids information forwarding, and saves energy. 

C. Napoli, G. Pappalardo, E. Tramontana et al. [14] describe some 
neural network methods used to obtain a classifier that analyzes a 
company’s employees through workgroups. The data used on their 
professional skills and attitudes are processed, and the resulting infor-
mation indicates how the groups should be created to be more efficient. 
To process the data, they used a classifier based on a probabilistic neural 
network, which creates workgroups based on the type of relations 
generated between employees in terms of collaboration. In this way, this 
tool allows employees to be evaluated more fairly and quickly. From the 
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results, the authors conclude that the classifier’s accuracy is very high, 
which allows demonstrating that the proposal based on a bio-inspired 
classification system is viable. 

B. Yao, X. Liu, W. Zhang et al. [15] explains the use of graph theory as 
a mathematical tool to describe and redefine IoT. The authors also show 
IoT as the union and grouping of topological and data-functional net-
works. However, this proposal presents some challenges when using 
graph theory in IoT-Networks. Two of these are presented in the paper’s 
conclusions and are related to the networks’ topologies and balanced 
sets. 

K. Batool and M. A. Niazi [16] present a modeling methodology 
based on a combination of agents and complex networks for IoT. This 
technique uses an agent-based cognitive computing (CABC) framework 
to simulate these networks. The IoT is considered a complex network 
system because of its rapid growth, and through this tool, it is possible to 
model its structure. Additionally, the authors demonstrate the pro-
posal’s effectiveness through a case study where testing a new algorithm 
and the devices’ energy consumption monitoring on an IoT-Network. 

G. Fortino et al. [17] describe a model IoT-Networks through agents. 
This system uses the Agent-based Cooperative Smart Object (ACOSO) 
model. Where each Smart Object or Smart Thing in an IoT-Network is 
described in this model under the name ‘agent.’ Therefore, it analyzes its 
features, relations, and communication level. Authors ensure that this 
proposal is an excellent option to model IoT-Networks since there is no 
already system for modeling and simulation. The simulation tests used 
the OMNET ++ platform to evaluate and analyze possible communi-
cation bottlenecks. 

H. Yu and X. Xia [18] present the study of a problem in a network 
with multiple agents and a leader. This problem consists of achieving 
consensus coordination for dynamic agent networks. It is because 
multi-agent systems have applications in many areas, including control 
and robotics. However, its use in this article has extended to the area of 
dynamic networks. Authors show the design of an adaptive method 
based on the theory of graphics and Lyapunov’s theory through an al-
gorithm. Finally, they provide the results obtained from different tests. 

Some of the previous proposals show the techniques for conforming 
groups of nodes on different architectures and selecting a leader. How-
ever, the proposal [12] groups Gateways into a Fog layer of the proposed 
architecture using ML to select the best Gateway (leader) from each 
group to connect to the cloud layer. In our proposal, layer four groups 
the objects of the lower layers of the architecture using AI (only leader). 
The IoT layer used in most architectures is separated in this proposal into 
three layers. In this way, the functionalities are separated and kept as a 
stand-alone system. Furthermore, it is easier to classify groups and to do 
centralized management. 

3. Proposal description 

3.1. Problem formulation 

As a case study, the behavior of connected objects within a house is 
analyzed through how they connect and share information between 
them and Internet. Currently, a user can acquire everyday objects for 
their home based on electronic devices with the ability to process and 
communicate. However, the service they provide to the user through 
their main function is basic, independent, and isolated, and not based on 
cooperative behavior. An extension of its main function is limited to its 
control and monitoring over Internet or through a local connection. For 
example, an IoT coffee maker is an object with the ability to prepare 
coffee and connect to Internet, but it depends entirely on the user’s 
control, it is not autonomous, nor does it work collaboratively with other 
objects within the house. Most of these objects work in the same way, 
although commercially, the arrival of objects based on high capacity 
devices that include AI (Smart Things) is expected. Nevertheless, the 
conventional network of a house limits them since the router is low 
capacity. Moreover, the architecture on which networks are currently 

based is not intended to transport the information required by an AI 
between connected everyday objects. 

In other words, IoT objects are not joined to meet the needs of a user 
through the same service automatically. They work independently and 
through different types of commands for their activation. An IoT object 
does not auto-identify or auto-classify, neither assume work roles in the 
network according to its function, nor create automatic relations with 
other objects. Much of this problem may be due to the element that 
performs the network administration, in which, for this case study, it 
could be due to the router. This network element is a device that only 
performs two main tasks; it processes automatic network addressing and 
Internet access, although it allows connectivity between devices on the 
same network. It is a limited capacity device with low processing and 
memory level, it does not store high volumes of information, and it is not 
reprogrammable. Another additional problem is that it only offers two 
interconnection technologies, WiFi and Ethernet. Regarding the archi-
tecture, it is important to mention that, although up to now it has been 
possible to work with traditional architectures to interconnect IoT- 
Networks, such as Transmission Control Protocol (TCP / IP), there is 
no standard architecture to do so. There are some proposals, but none of 
them is designed to provide interfaces between layers to an AI or handle 
multiple connections of different technologies or multiple IoT-Protocols. 
That is, there may be a cloud that supports AI and objects that support 
AI, but there are still neither Gateway devices on the market that sup-
ports AI, nor an architecture to allow their integration. 

3.2. Architecture proposal 

We propose a grouping model for different types of objects that 
attend the same service type to a user. The grouping is carried out by an 
AI hosted within an IoT-Gateway and is based on ML techniques to 
analyze the data extracted from each object connected to the network. 

The AI controls the algorithms that make the network operational 
and interconnects with the other AIs located in the different architecture 
layers through an interface. This interface is described in the operation 
of the architecture on which this proposal is based. The workgroup 
creation algorithm, which uses ML, analyzes the features that define an 
object’s functions and capabilities. With this information, the ML clas-
sifies an object and assigns it within a workgroup according to the type 
of service it can collaborate and assigns it a role within an architecture 
layer. All objects are different in terms of capabilities and functions and 
can provide different services and share different resources; therefore, 
an ML can help predict which group an object can belong to and in 
which layer should be assigned. 

3.3. Architecture with centralized management 

This IoT-Architecture with AI (IoT-SmartArchitecture) and central-
ized management encompasses the most important aspects of Cloud, 
Edge [19] and Fog computing through SmartFog [12] and integrates 
them with other architectures to give place to smart objects in a network 
IoT. It is an architecture with additional functionalities that allows, 
through the fusion of different architectures [20], solving problems of 
adaptation and recognition of functions and services in connected ob-
jects. This architecture organizes objects in 5 layers with an ascending 
hierarchical structure in a tree or star between layers 2 to 5 and an 
ad-hoc structure in layer 1. With this structure, it is possible to propose 
new routing and grouping algorithms for an Smart IoT-Network, 
designed under this architecture. 

Each layer has a predetermined functionality, so the AI assigns a role 
to an object according to the degree of coincidence of its features with 
these functionalities. It does not matter which layer an object is 
assigned, due to the flexibility of the architecture, the same structure is 
still maintained. The objects’ features are directly related to the pro-
cessing capacity, memory, and connectivity of the electronic device. 
That is, the assignment of the role is oriented to the hardware’s capacity 
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of the objects and the functions that they can perform. 
According to Fig. 1, this architecture comprises the next five layers: 

Internet, Management, Artificial Intelligence Assistant (AIA), Things, 
and Sensors. Each one of them is briefly described below in descending 
order. 

Layer 5: Internet layer attends to queries from local IoT-Networks 
identified with the same user profile, that is, it can maintain a connec-
tion and provide service to the user inside or outside their home, making 
parameter groupings. The AI within Cloud assumes the user’s local home 
network to use as the main network, and its functionality is based on 
maintaining and restricting access to queries, only to the AI of the IoT- 
Gateway of local networks, such as home, office, and any place of the 
city, connected under the same type of parameter [21,22]. 

Layer 4: Management layer is the main layer of the architecture and 
is controlled by an AI within an IoT-Gateway. This a multi-protocol 
gateway with decision-making that also works with different intercon-
nection technologies [23]. It is similar to the network layer that uses the 
other architectures, but with the difference that it is interoperable and 
intelligent, and it centralizes de information. Its main and most impor-
tant function is to create workgroups and manage internet access. AI 
controls the algorithms that interact with the other AIs in the upper layer 
(Internet) and the lower layers (AIA, Things, Sensors) through in-
terfaces. This interface is achieved using DFSP [23], a simple protocol 
that adapts to each IoT-Protocol payload’s sizes. 

When the AI does not know the IoT-Protocol, it consults the AI in the 
cloud for its structure, learns it, adapts DFSP to its payload size. In this 
way, the AI extracts the data from each object’s features to learn it and 
classify it. When a new object is connected to the network, the AI does 
not know what type of object it is, so it evaluates it through its features 
and, depending on the nearness of these features with the objects 
established previously in the network, assigns it a role. With this role, 
the AI knows if the object is a Cloud, a Gateway, an AIA, a Thing, a 
Sensor, or an Actuator. 

In other words, the device on which the Gateway is built under this 
architecture must have the capacity to control several algorithms such as 
routing and grouping, store, AI support, M2M broker support, and 
manage Internet access. 

Layer 3: The task of AIAs is the usual and similar to virtual assistants. 
These capture command and execute it, but with the difference that it is 
no longer done under cloud computing architecture, that is, information 
processing is no longer done in the cloud. When the AIA receives a 
command to activate a object, it is first analyzed by the Gateway’s AI, 
and based on its evaluation, it will decide if it is necessary to do a query 
or processing in the cloud or to process it locally. Moreover, to achieve 

that an object is actuated locally, the commands must be sent over some 
IoT-Protocol and perform an M2M connection. For this, the IoT-Gateway 
must have the ability to host a Broker that allows objects within the 
architecture to connect via M2M. 

Layer 2: Things layer identifies objects of more complex capacity 
with diversified uses and physical structures designed for specialized 
tasks. As the case study of this work is on Smart Home, most of the 
objects are built from large capacity devices designed to operate as 
household appliances. These devices have good processing capability 
since they can support an AI and, in some cases, handle various types of 
connection. The AI in these devices has two fundamental tasks: learning 
from the usage habits of its user and reporting the changes and features 
to the central AI. Most of the time, objects classified as Things contain 
sensors for their operation, which does not imply dividing the object into 
two layers. However, if the Thing is a device responsible for collecting 
information from sensors in a system, the architecture does divide them. 

Layer 1: Sensor layer is a layer that contains sensors and actuators or 
objects with both functions. In this layer, these objects can capture 
analog and digital signals and transmit it, or even depending on their 
ability, can process them. Most of these final objects perform type ON / 
OFF or data streaming actions and can operate directly by connecting to 
the IoT-Gateway or the Cloud. However, according to this architecture, 
its connection point must only be the layer immediately above (layer 2). 
The communication between them keeps under the same M2M 
connection policies that the IoT-Gateway. However, the connection may 
not support an IoT-Protocol. Therefore, to use an end-to-end IoT pro-
tocol in this architecture, it is recommended to use, e.g., MQTT-SN, in 
this layer [24]. 

Processing levels (L): This architecture operates under three pro-
cessing levels integrated and communicated through an interface. Level 
1 begins where the data is generated through objects with AI (Smart-
Things), which process or pre-process information about the user’s daily 
activity. Level 2 or central, is the IoT-Gateway with AI (SmartGateway), 
which centralizes, processes, and classifies the information. Level 3, the 
cloud with AI (SmartCloud), processes high volumes of information and 
compares and relates them to those of other clouds. These processing 
levels allow the separation of functionalities, decrease latency, and 
reduce the response time when there is a loss of communication with the 
cloud. This processing distribution gives autonomy to the SmartThings 
to process data from Sensors and its users’ direct obtained. That, in turn, 
lowers Level 2 latency. Moreover, it is possible to extend this autonomy 
if the central AI allows a partially distributed management under its 
supervision. That is, things are directly connected to other things 
without the intervention of the SmartGateway. That also lowers Level 2 
latency. However, this work will not use this type of connection. 

AI-Interface: This interface is made to transport the information 
required by the AI between 3 different processing levels and coordinate 
their priority. These levels are communicated through DFSP messages, 
specifically the COMPUTING message. Every time a user uses an object, 
the internal AI stores the information (Level 1) and processes them to 
statistically learn which resources are commonly used and what purpose 
they are used. It then uses the interface to send the information to the 
next level of processing. This information travels through the DFSP 
messages and allows the centralized AI to build a database of all con-
nected objects’ features through the following profiles of features, 
Functions, Services, Resources, and Capabilities. The centralized AI in-
forms the connected objects using COMPUTING messages about the 
number of features and the order they should be sent. 

Pre-processing: This event occurs before sending the features to the 
Smart Gateway. The features’ data is organized according to the speci-
fications of the central AI. Some of them are converted to binary data 
types to reduce the payload’s size and sent in JSON format. Further-
more, there may be no coincidences between the manufacturer’s fea-
tures concerning those requested by the central AI. Therefore, it 
transmits the order of the most relevant features and a translation table. 
With this table, the text is processed, and the AI of the object only returns Fig. 1. IoT Stack SmartArchitecture.  
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binary values corresponding to whether the feature exists or not. In turn, 
if the feature is a text value returns the corresponding number assigned 
in the table. The rest of the features with integer or decimal values return 
this value with the name feature associate. 

On the other hand, the object’s AI can learn which features have been 
accepted correctly in each request and improve this table. In addition to 
this, the object’s AI can pre-process data related to user preferences 
based on its use and create different profile users. 

3.4. Collaborative workgroups 

The literature reviewed in Section 2 shows that some group-based 
networks are grouped according to something in common. E.g., groups 
of nodes share the same type of resource, function, relations, topology, 
data, interconnection technology, bandwidth, route, capacities, pa-
rameters. In other words, this type of groupings only select elements of 
the same type. In the case of grouping by services, an element of a group 
could not contribute to other groups because they do not have the same 
service. On the other hand, in this proposal, each object is analyzed and 
classified within a group if the features related to its resources, capac-
ities, and functions, can help other objects to fulfill a service. Moreover, 
they can collaborate in one or several workgroups. In other words, this 
proposal, based on collaborative workgroups, are groups of objects that 
share a common work to serve a user. In this sense, the AI can decide 
which group to assign an object to and coordinate its intervention to 
collaborate within the group, measuring its percentage of participation 
and its degree of importance. The work to be done by each group is 
previously characterized by the IoT-Gateway’s AI to fulfill a service. 
These services are defined from interprets’ the object’s AI’s data 
collected about its users’ lifestyle habits. Our goal is to automatically let 
any new object join the IoT network and serve the users without their 
intervention, just Plug-and-Play (PnP). 

3.5. Network model 

Let U be the universe of Smart IoT-Networks (SmartHome, Smar-
tOffice, SmartFactories, SmartCity), connected through clouds. Ac-
cording to the design of Fig. 2, we will model the case of Smart Home. 
Where B and C are two disjoint sets (different networks) connected 
under the same architecture. The B set spans layers 1 to 4 of the archi-
tecture while C set is located in layer 5. 

The B set is defined as a Wireless Local Area Internet of Things 
Network (IoT-WLAN) like a Smart Home or any other like a Smart City 
with this same architecture, which can be defined and mathematically 
modeled as follows. Let B = (W, λ, E) be a network of connected objects 
(shown in Fig. 2), where W is the set of objects, λ is the set of their ca-
pacities, and E is the set of links between objects. All this collection of 
sets and subsets are distributed in the different layers of the architecture 
(shown in Fig. 1). 

Fig. 3 shows the connected objects according to the network shown 
in Fig. 2. Nodes are grouped into sets and subsets. Here, W = {b0, b1, b2, 
…, bn}, where bi represents the i-th object before assigning it a 

Fig. 2. Architecture of smart IoE proximity networks with centralized management.  

Fig. 3. IoT-Network model workgroups-based.  
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workgroup and a layer (li). Wi represents the subsets called workgroups 
and Wc the nodes that are not within a group. bi could be in two different 
groups, then the workgroups are not disjoint sets. 

Considerations:  

1 (n + 1) it is the total number of objects since b0 is the only IoT- 
Gateway node within the network, and where all other nodes are 
connected to. Then the equation given for W is shown in Eq. 1, where 
m is the total number of subsets. 

W =

(

∪
m

i=1
Wi

)

∪ WC (1)   

It can also be noted that: 

n + 1 =
⃒
⃒WC

⃒
⃒+

⃒
⃒
⃒ ∪

m

i=1
Wi

⃒
⃒
⃒ (2) 

As the IoT-Gateway node (b0) will be part of all subsets Wi, it is clear 
that: 

∩
m

i=1
Wi ≥ 1 (3)    

1 Initial working conditions are pre-established from the design shown 
in Fig. 2. It assumes that there are already three workgroups and that 
the objects are organized in the architecture shown in Fig. 1. Under 
these conditions, it is possible to characterize each of the objects and 
structure a dataset used to find the best classifier. 

In Fig. 3, these groups are made up of heterogeneous objects (bi) 
called nodes and whose only similarity will be based on the degree of 
collaboration to attend a service. The dataset obtained contains the 
features of each node’s functions and services previously classified 
within a workgroup and with a role assigned according to the archi-
tecture layer. With this dataset, when entering a new instance, bi will be 
assigned as Ci, Gi, AIAi, Thi, or Si according to the layer, and to a wi 
according to the workgroup. 

Whereby is defined:  

- IoT-Gateway: b0 = G0, keeps network management.  
- ei ∈ E, where e0 is the connection between set B and C.  
• Objects connected in the network:  

- nodes: bi ∈ W = {b1, b2, b3, …, bn}.  
- feature: fi ∈ F = { f1, f2, f3, …, fn}.  
- function 1: f(W) = { f:W →{0, 1}}.  
• Register of features in a dataset:  

- class:C j ∈ C = {C 1, C 2, C 3, …, C n}.  
- dataset: di ∈ D = {d1, d2, d3, …, dn}, where di = { f1(bi), f2(bi), fj(bi), 

…, fn(bi), C j}.  
- function 2: f(D) = { f: D → C}, such that each di is assigned to a class C 

j. 

F is defined as a finite set of features related to a node and predefined 
in a dataset structure. Therefore features of a node (di) are obtained 
through the feature function f: W → {0, 1}, where fj(bi) = 1, it means that 
it has these features, otherwise fj(bi) = 0. The di indicates the i-th node 
(bi) data register, each characterized with fj(bi) and using to C j as class 
features. 

To achieve that an ML model assigns a node to a group, and a layer 
through its features, it is necessary to find an ideal way to classify it 
through a function f: D → C such that each fj(bi) is assigned to a C j class. 

f: D → C could be a K-Nearest Neighbor (K-NN), a K-Means, a Neural 
Network, a Multi-Layer Perceptron (MLP), a Decision Tree (DT), a model 
based on Discriminant Analysis, or a Gaussian Naive Bayes (GNB) or any 
other. 

Given a collection of registers of D, each register contains a set of 
variables (features) that define a profile and will be denoted by Xp =

[f1(bi), f2(bi), f3(bi), …, fk(bi)], with an additional variable (feature) of 
class that will be denoted by y = [C j]. Therefore, the register could be 
rewritten as di = {(X1, C 1), …, (Xi, C j), …, (Xn, C n)}. 

In a K-NN classifier, dataset DK
X, has been classified previously uti-

lizing like training matrix (XTn, C Tn) through the class labels called 
workgroup and layer. This classification is based on the distance be-
tween the K neighbors with similar features. When a new instance enters 
the system, it is assigned to a group and an architecture layer. The 
standard distance for this classifier is Euclidean (de), but others can also 
be used depending on the data type. In the case of boolean values, it is 
possible to use the Manhattan distance (dM) and others as Chebyshev 
distance (dCh) and Minkowski distance (dMk). 

If a node’s features are present in one or more sets, it uses the simple 
matching coefficient (SMC) or the Jaccard index (IJ). If there is a node at 
the intersection between sets, its features (functions, services, resources, 
and capabilities) are shared. SMC encodes 1 and 0 if one feature is 
present or absent in both sets, while IJ only encodes when the feature is 
present. For binary data types 1 and 0, SMC is the most appropriate as it 
obtains a better measure of similarity and more computationally 
efficient. 

Once the system has trained with N cases for DK
X, the ML can predict 

how it will classify the new instance depending on the distance of its 
features between K neighbors. 

Fig. 7 shows how some nodes of Fig. 4 would look organized by 
groups and layers. 

3.6. Algorithms implementation 

Below are the algorithms implemented in the simulations and the 
time to compute it. Each algorithm and procedure preexisting in [25, 
26], was taken and modified using the previous equations. 

The running time or time complexity is estimateed based on the 
system runs any of these algorithms [26]. This running time is shown in 
Table 1. 

For the proper run of the algorithm, it is necessary to consider that 
there is a dataset structure with four feature profiles (Xp) in the IoT- 
Gateway (G0). In other words, all node features are divided into four 
profiles. Each profile is delimited by a specific number of features and a 
classifier class. These are extracted from the node through the 
ANNOUNCEMENT or DISCOVERY messages, using the FUNCTION, 
SERVICES, RESOURCE, and CAPACITY profile sub-messages. The data 
obtained through each message is organized and stored in the dataset. 

Fig. 4. IoT-Network model workgroups-based.  
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The total structure of a dataset register would be as follows, di =
{(X1, C 1), (X2, C 2), (X3, C 3), (X4, C 4)}. To realize the grouping of the 
objects and classify a new object in one of these groups, only necessary 
to work on a dataset made up of the profiles of functions and services. So 
the dataset for grouping only uses the first two segments defined like 
this: di = {(X1, C 1), (X2, C 2)} and for routing the last two segments 
defined like this di = {(X3, C 3), (X4, C 4)}. The class label for C 1 is 
“workgroups”, and forC 2 it is “layer”. 

Fig. 5 shows the flowchart of the ML classifier. The G0 establishes an 
event listener, waiting for the connection of a new object. When there is 
a “new object” within the network, this must announce its features using 
the “features number” and the “features sequence” that the AIs have 
previously exchanged. In turn, it activates a timeout of 10 sg. If the new 
object is not announced, the G0 sends a DISCOVERY message. In both 
cases, the messages extract the object’s features, and then the ML pro-
cesses them. Once it completes the features’ register, the ML classifies 
the object into a workgroup and a layer. 

The following training methodology was used for each ML classifier. 
It was taken n = 54 different objects and features about their functions 
and services were extracted. X1 = 20 for the functions profile and X2 =

10 for services. Then they were classified into three test groups (m=3) 
with (C 1) and in an architecture layer (C 2). That is, the input values of 
the classes function are initially set by default. The values of C 1 are set as 
{1, 2, 3} representing {w1, w2, w3} respectively. The C 2 values are set to 
{1, 2, 3, 4, 5} representing the layer {l1, l2, l3, l4, l5} respectively. With 

this dataset previously-stored and predefined, each ML is trained. 
Table 2 shows the parameters used to train each of the ML classifiers. 

Depending on the classifier, the parameters change and are adjusted 
according to its operating structure. However, some parameters are 
common to all classifiers, like input nodes, workgroups number and it-
erations’ number. Table 3 indicates the parameters’ notation be used in 
the algorithm and its corresponding meaning. 

Data preprocessing and standardization of the dataset are very 
important since it will get less accurate predictions when using a ma-
chine learning estimator. In the K-NN’s case, the scaler used was 
“MinMaxScaler” the rest of the classifiers used “StandardScaler.” 

As shown in the flowchart, when starting the central AI, this already 
contains an ML that has been previously trained with a predefined 
dataset, which was selected for its high percentage of accuracy in the 
tests. This ML is ready to classify a new object by characteristics in a 
working group (Algorithm 2) and an architecture layer (Algorithm 3). 
Then, it is updating the new information in the dataset (Algorithm 1) 
and stores it. 

Algorithm 1 updates the dataset’s information hosted in G0 when a 
new node (bi) is connected, or due to a change in the network, e.g., a 
node is turned on or off. Therefore this algorithm, each time a DFSP 
message arrives, updates the dataset. 

Table 1 
Time Complexity.  

Classifiers Time complexity 

K-NN O(n⋅d + n⋅K) 
K-Means O(n⋅K⋅d) 
Radial Basis Neural Networks (RBNN) O(n⋅K⋅D) 
Support Vector Machines (SVM) O(n2 ⋅ |F|) 
Decision Tree (DT) O(|X|⋅|F| log |F|) 
Gaussian Naive Bayes (GNB) O(|X|⋅|F|) + O(|C |⋅|F|)  

Fig. 5. Flowchart of the ML classifier.  

Table 2 
Parameters used to train different classifiers.  

Classifiers Parameters n = 54, m = 3, Iterations’ number =100 

K-NN K=3, metric=‘chebyshev’, n_jobs=100 
SVC gamma=2, kernel=‘rbf’, probability=True, C=1 
GP 1.0 * RBF(1.0) 
DT max_depth=5 
RF max_depth=5, n_estimators=10, max_features=1 
MPL alpha=1, max_iter=1000 
AB n_estimators=50, learning_rate=1.0, algorithm=‘SAMME.R’ 
GN var_smoothing=1e-09 
QDA store_covariance=False, tol=0.0001  
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Algorithm 2 classifies a new instance di within a group wi in the 
network through any classifier from Table 1 or any other with high 
accuracy. This algorithm begins by reading the predefined table and 
training the ML. Read the first two profiles from the dataset and use the 
class feature to start the training. Then the dataset is divided into 
training and tests, taking 75% and 25%, respectively. The next step is to 
normalize the data and use an ML model. The model with the highest 
accuracy will be selected for further training and implementation. It will 
evaluate the features of bi and assign it to a workgroup (wi). 

Algorithm 3, like Algorithm 2, classifies a new instance di in an ar-
chitecture layer through any classifier in Table 1 or any other with high 
accuracy. Steps 1 through 14 are similar to Algorithm 2, except that use 
class C 2. In step 16, the algorithm renames the identifier of the object 

according to the layer. 
Figure 6 shows the DFSP datagram and the messages used in Algo-

rithm 1 to update the feature dataset. 

4. Performance test 

This section provides the performance test. The tests aim to observe 
how the objects behave under this architecture using the algorithms and 
the proposed model. 

The idea is that the conventional router in a home will be replaced by 
an IoT-Gateway, with the ability to support AI, routing, grouping, 
storage, management, and hosting of services. These include hosting a 
Broker for M2M connections and allowing reprogramming to accom-
modate a ML classifier. However, the scope of the tests is only limited to 
grouping based on classification-oriented algorithms. 

4.1. Implementation of the devices 

The development of this proposal involves the use of single-board 
computers (SBC) such as the Raspberry Pi 3 Model B+ (RPi3) [21]. 
Each object in this proposal between layers 2 and 4 have been imple-
mented with an RPi3 device, except for the Cloud and Sensor layers. In 
layer 1, the sensor devices are implemented on a Programmable 
System-on-Chip (PSoC) as the ESP8266-01, which is integrated with a 
microcontroller and a Wi-Fi network module or is also used a WIFI LoRa 
868 (V2) board [27], to implement a sensor. 

4.2. Considerations for the simulations 

Since it is not possible to modify a wireless router in a house to 
include network management capabilities with this architecture, it is 
used an RPi3 to replace it. In this way, it is possible to program all the 
algorithms, modify them, and adjust them as often as necessary to 
achieve good tests. Therefore the RPi3 will be the IoT-Gateway, imple-
mented as a Wi-Fi router with expanded capabilities, and adjusted to this 
architecture’s operation. Among these capacities are the different IoT- 
Technologies of interconnection it can handle and the different IoT- 
Protocols with which it can communicate. However, we will only use 

Table 3 
List of parameter’ notations and its meaning.  

Notation Meaning 

n_neighbors (K) Number of neighbors. 
metric The distance metric to use for the tree 
n_jobs The number of parallel jobs to run for neighbors search. 
gamma Kernel coefficient. 
kernel Specifies the kernel type. 
probability Probability estimates. 
C Regularization parameter. 
RBF The kernel specifying the covariance function. 
max_depth The maximum depth of the tree. 
n_estimators The number of trees in the forest. 
max_features The number of features to consider. 
alpha Regularization term. 
max_iter Maximum number of iterations. 
learning_rate Learning rate. 
SAMME.R Real boosting algorithm. 
var_smoothing Variances for calculation stability. 
store_covariance Storage of covariance matrices. 
tol Absolute threshold for a singular value to be considered 

significant.  

Algorithm 1 
Updating dataset {D}.  

Input: DFSP messages over any M2M protocol. 
Process: 
1. Update dataset {D}. 
2. Function ← ANNOUNCEMENT [X1, C 1] 
3. Services ← ANNOUNCEMENT [X2, C 2] 
4. D ← { di = X1 + X2, C 1 + C 2}. 
Output: Updated dataset for two feature profiles {D}.  

Algorithm 2 
Creating collaborative workgroups (AI).  

Input: dataset { D}, di 

Process: 
1. Read and load to { D}. 
2. X ← [X1 + X2]. 
3. y ← [C 1]. 
4. Splitting the dataset into the Training set and Test set. 
5. X_train, y_train ← 75% of the D for train. 
6. X_test, y_test ← 25% of the D for test. 
7. Normalizer, scaler and transform the data 
8. X_train ← scaler (X_train) 
9. X_test ← scaler (X_test) 
10. Set fitting training classifiers (Using Table 1). 
11. Set the metric according to the selected classifier. 
12. Calculate the predictor accuracy and error. 
13. Print accuracy of the classifier on training and test. 
14. While accuracy ≥ 80% do 
15. For i=1 to m do 
16. wi ← classifier.predict(X). 
17. End for 
18. End while. 
Output: New node assigned to a workgroup (wi).  

Algorithm 3 
Allocation in architecture layer (AI).  

Input: dataset { D}, di 

Process: 
1. Read and load to { D}. 
2. X ← [X1 + X2]. 
3. y ← [C 2]. 
4. Splitting the dataset into the Training set and Test set. 
5. X_train, y_train ← 75% of the D for train. 
6. X_test, y_test ← 25% of the D for test. 
7. Normalizer, scaler and transform the data 
8. X_train ← scaler (X_train) 
9. X_test ← scaler (X_test) 
10. Set fitting training classifiers (Using Table 1). 
11. Set the metric according to the selected classifier. 
12. Calculate the predictor accuracy and error. 
13. Print accuracy of the classifier on training and test. 
14. While accuracy ≥ 80% do 
15. l ← classifier.predict(X) 
16. Switch(l) 
17. case 1: 
18. Rename(bi) ← Si 

19. case 2: 
20. Rename(bi) ← thi 

21. case 3: 
22. Rename(bi) ← AIAi 

23. case 4: 
24. Rename(bi) ← Gi 

25. End Switch 
26. End while. 
Output: New node assigned to a layer (l).  
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Wi-Fi over TCP protocol in the simulation connection in order to facil-
itate the tests. The RPi3 devices of layer 3 are things and they connect 
with the Layer 1 sensors via Wi-Fi and Bluetooth. 

The first part of these tests show how the dataset os established in the 
IoT-Gateway. It is preconfigured with several features, organized 
through feature profiles, and select the features that will act as classi-
fying classes for each profile. Once the dataset is structured, the data 
extracted from all the objects connected in the network is stored 
following the number and order that the AI requires through the 
interface. 

In the second part, the capacity λ of the devices on which objects are 
developed (Layer 2 to Layer 4) are considered the same because all the 
objects are based on an RPi3, and therefore, the capacities are the same. 
In the case of the connections from Layer 2 to the boards of the devices in 
Layer 1, the capacities are different and lower, so in this case, it is 
considered that λ equals the lowest. 

The third part tests the grouping algorithm, based on the fact that the 
IoT-Gateway establishes routing over TCP. Then the case is considered 
that the network is previously established and that the IoT-Gateway is 
the one who discovers objects or waits for them to be announced. 

This simulation scenario uses a fixed number of objects and groups. It 
is designed assuming each object’s participation within a group when 
attending a service type. In this way, each object reports the data of its 
features under these conditions. This data is stored in the IoT-Gateway’s 
dataset. Then, it is analyzed using different classification techniques, 
testing each one separately until the classifier is found with the highest 
precision in the prediction. 

The data obtained from the objects in the simulation are transported 
under the architecture’s AI Interface policies. Whereby, our system uses 
the DFSP protocol over IoT-Protocols such as MQTT (layer 2 to 4) and 
MQTT-SN (layer 1) [28] over TCP for transport. The data is 
pre-processed in level 1 according to the centralized AI requirements 
and finally processed in level 2; for this case, only level 3 is used when it 
is necessary to process very dense information such as sound and 
images. 

Once the entire network converges and is stable, with a previously 
pre-established dataset and the selected classifiers and trained, the 

network is finally ready to receive a new object. Therefore, if a “New 
object” enters the network, the ANNOUNCEMENT message is activated 
and sent through DFSP/MQTT protocol to the IoT-Gateway, or the 
opposite, after some time the IoT-Gateway discovers it using the DIS-
COVERY message. In this case, the network is evaluated when the user 
places the New Thing observing how the AI assigns it, according to its 
features, to a workgroup and the architecture layer. 

4.3. Simulators 

The simulation was carried out with several simulators such as Cisco 
Packet Tracer 7.3, Jupyter [25], and iFogSim [29,30]. Each of them 
complements the other. 

With Cisco Packet Tracer, the proposed architecture and model was 
emulated over an entire network on. This simulator does not have pre- 
installed network algorithms in RPi3 as in real implementations, but it 
allows programming in Python and Java. It is a great advantage because 
it allows modifying and programming the proposed algorithms and 
putting the network into operation according to the architecture. It can 
simulate a real connection to the cloud (IoT-Platform: Thingspeak) and 
capture packets using Wireshark. 

With Jupiter, the ML of Table 1 and Table 3 is simulated in Python 
language, testing each classifier. The goal is to predict where will be 
assigned a new object according to its features of a group given and 
previously characterized, depending on whether its features are closest 
enough to the group or not. The library used was scikit-learn 0.23.2 
[26], together with other important libraries for data preprocessing. 

4.4. Testbed 

The simulation scenario is organized in groups and layers, and each 
group is arranged so that they can collaboratively provide a service. As it 
was observed in the network model presented in the previous section, an 
object can participate in providing a service in one or more groups. 
Therefore, each object in Fig. 7 is labeled with Wi, representing its 
participation in each group. With this scenario, the initial data for ML 
training is collected. 

Fig. 6. DFSP Messages.  
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The first test is assumed that the IoT-Gateway connects with Wi-Fi to 
all network objects sending data over the DFSP/MQTT protocol. While 
the network converges, it storing data in IoT-Gateway, updating the 
features dataset pre-established. Then, the number of features versus the 
number of objects in the dataset network is previously analyzed. If there 
are too many features that are not relevant, this can affect the result. 
Therefore, a correlation map is made between all the feature profiles 
that define the connected objects’ functions and services. The objective 
was to evaluate which features were relevant (they had an average ab-
solute correlation coefficient greater than 0.68) to evaluate the work-
group and layer. With this information, the most representative 
variables were selected to perform the classification. 

It caused a change and a minimal reduction in the dimensions of the 
dataset. The parameters that varied were X1 = 20 decreased to X1 = 14 
and X2 = 10 decreased to X2 = 7. It was also observed that the results are 
affected by increasing the number of objects in the network. When the 
number of objects was increased while maintaining the same number of 
feactures, the results improved. Because of a new object added, the 
number of registers in the dataset increased from n = 54 to n = 59. In 
other words, five new objects were used in the test. 

Fig. 8 shows the ML using a classification method based on 

discriminant analysis to categorize the three groups. The workgroup 
label was used as the classifier class of the discriminant function to make 
the prediction. The two discriminant functions with P-values lower than 
0.05 are statistically significant with a confidence level of 95.0%. 

Fig. 8 shows these workgroups as the collaboration between different 
types of objects joined to attend a service by interpreting its features; in 
this case, there are three services. 

The red squares, blue circles, Xs, and asterisks observed in Fig. 8 
shows the objects that belong to different groups. Some of these ele-
ments are very close to each other, which represents their nearness in 
their features. It is also observed how some of these features intervene in 
one or more workgroups. For this reason, it is seen that in some cases, 
objects overlap one over the other, indicating that there is an intercep-
tion between the groups. 

The results obtained through the discriminant analysis suggest that it 
is possible to obtain better results by applying a classifier based on the 
nearness of its features. For this reason, it is initially tested with a K-NN 
classifier, and the dataset is evaluated to know what precision will be 
when a new object is classified after it reaches the network. 

The best choice of K depends fundamentally on the data; generally, 
large values of K reduce the effect of noise on the classification but create 
boundaries between similar classes. Fig. 9 shows that with values K = 3, 
greater precision is achieved, so it is selected for all tests. 

The four distance metrics used to test the K-NN model are defined 
below: de, dM, dCh, dMk. The dataset was divided into 75% for the 
training model and 25% for the testing model. It is then applied data 
preprocessing and standardization of the dataset with “MinMaxScaler” 
and “StandardScaler.” 

4.5. To select the best configuration of the K-NN classifier, we have 
realized different tests 

First, it is tested with “StandardScaler” and all the distances in metric 
parameter, and then with “MinMaxScaler.” It is observed that with 
“StandardScaler,” most results were high. However, using “Min-
MaxScaler” with metric = dCh gives the best result for the “workgroups” 

Fig. 7. Simulation scenario organized by groups and layers.  

Fig. 8. Discriminant Analysis.  
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class. On the other hand, with the “layer” class, each parameter’s best 
result give using “StandardScaler.” 

Fig. 10 shows the best results for the different tests using K-NN for 
two classes. The experiment is performed 100 times for each combina-
tion of parameters. 

The running time that the algorithm takes to learn the parameter in 
the two best results in Fig. 10 is 0,47 seconds for the “workgroup” class 
and 0,44 seconds for the “layer” class. It is run all experiments using a 
Python program on a DELL PC with a Core i7 microprocessor and 4 GB 
RAM. 

Fig. 10 compares the results of different distance metrics for each 
classification label. It is observed in the results that the accuracy ≥ 68% 
in all the tests, being de and dCh the best. With de is obtain an accuracy =
95% to predict an architecture layer and with dCh an accuracy = 90% to 
predict the workgroup. 

Fig. 11 shows the error in the previous tests. Results show very low 
error for most of the distances evaluated. 

As it is observed in Fig. 11 the error rate at K = 3 was 0.14 for most of 
the distances, while dCh, which previously showed the best precision for 
the workgroups, was 0.23. 

The dataset obtained from the network test of Fig. 5 is small in the 
number of samples or registers per object. This dataset may have more 
features (variables) than objects because they are necessary to describe 
functions, services, relations, resources, and each device’s location in 
the house. However, it can happen that after a threashold, the perfor-
mance of the model will decrease due to the number of features. If 
features are continuously added without increasing the number of 
samples, then the space between the features increases and it becomes 
more dispersed. Therefore, to adequately process the data and reduce 
random variables, it is only considered the main variables using 
dimensional reduction methods. That allows it to remove redundant 

variables that do not add new information to the dataset and make it 
easier to view it. 

In order to improve the results of the K-NN classifier, it is applied it 
several dimensionality reduction techniques. The reduction tests were 
performed for the “workgroup” class with K = 3, metric = de, and 100 
iterations. 

Fig. 12 shows the Principal Component Analysis (PCA). It identifies 
the combination of features and helps examine relations between groups 
through the main or most relevant features of the dataset. The orange, 
gray, and red points represent the features of each workgroup. Although 
it applies a large dimensionality reduction to the dataset, still it is being 
observed more features than in the other two figures. 

Fig. 13 shows a Linear Discriminant Analysis (LDA). This technique is 
used to observe the differences between the groups since classifying can 
cause overlapping and the shared features are not appreciated. 

Fig. 14 shows a Neighborhood Components Analysis (NCA). It tries 
to find a feature space to improve accuracy. 

In any case, none of the three figures shows a clustering of the data 
that is visually meaningful, like in HYPERLINK \l "fig0008" Fig. 8. 

The results of these reduction techniques PCA, LDA, and NCA applied 
to the K-NN model are compared with those obtained in Fig. 10. It is 
observed that using PCA and NCA, the accuracy is improved from 0.71 
to 0.74. However, the PCA technique even lowered from 0.71 to 0.68. 

After realizing the tests, the K-NN classifier with the best results is 
selected. We obtained a precision of 0.9 in training and 0.71 for tests 
with the workgroup class using dCh. For the layer class, the best results 
were obtained using de with a precision of 0.95 in the training and 0.86 
in the tests. 

K-NN results are now compared with other types of classifiers, which 

Fig. 9. Selection the best value of K.  

Fig. 10. Comparison of distance metric in a KNN classifier (K=3).  

Fig. 11. Comparison of Error Rate in a KNN classifier (K=3).  

Fig. 12. PCA, K-NN (K=3) Test accuracy = 0,67.  
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use different techniques and metrics. Fig. 15 shows a comparative graph 
with the other classifiers. 

Fig. 15 compares the accuracy obtained between the classifiers K- 
NN, SVM, Gaussian Process (GP), Decision Tree (DT), Random Forest 
(RF), MLP, AdaBoost (AB), Gaussian Naive Bayes (GNB), and Quadratic 
Discriminant Analysis (QDA). In the results of the figure, it is observed 
that the classifier with the lowest accuracy was QDA and the highest was 
MPL. However, it is also appreciated that the K-NN classifier hasan 
average value like the other classifiers. The results obtained for the 
workgroup class with Neuronal Net MPL were 100% accurate in the 
prediction and 90% for the layer class. 

Furthermore, the training time for KNN = 0,44 seconds, SVC = 0,043 
seconds, GP = 0,675 seconds, DT= 0,049 seconds, RF= 0,7 seconds, 
MPL= 0,5 seconds, AB= 0,8 seconds, GNB= 0,5 seconds, QDA= 0,8 
seconds. 

Fig. 16 shows each classifier’s error rate, and it can be seen that the 
MPL classifier has the lowest error of all (workgroup class) compared to 
the rest. In addition, the class layer for the same classifier has no value. 

Fig. 17 shows the cross-validation technique applied to the models 
used. In this case, it is using a cross-validation process with ten in-
teractions. This technique just was applied to workgroup class for all 
classifiers. 

The figure shows that the best classifier is MPL since the accuracy 
value (orange line) is the highest, and the upper and lower error margins 
are lower than the rest. However, the precision depends on the test and 
training data sets, which may be biased, so cross-validation is a better 
approximation. The difference between some values compared with 
those obtained in Fig. 15 probably is due to inadequate data randomi-
zation. Therefore, rather than just measuring accuracy, efforts should be 
focused on improving the algorithm. If the algorithm is improved, the 
accuracy will also improve compared to previous approaches. 

5. Conclusion 

In a conventional WLAN, a WiFi router can not intelligently manage 
Internet access, storing datasets, host an IoT-Broker, or support AI. For 
this reason, it is proposed the use of low-cost SBC and freely developed 
boards and convert them into programmable IoT-Gateways to let them 
use the algorithms proposed in this paper. In this way, the objects 
connected can send information to AI through IoT-Protocols using this 
architecture. 

The K-NN classifier, being a simple method, is ideal for classifying 
the most similar data points, and it is also easy to implement, although 
compared to the other classifiers, it was not the best. However, it 
remained within the average results. The tests showed that the MPL 
classifier is the best to classify both classes. The obtained results were 
very high compared to the other classifiers. It is necessary to continue 
testing other classifiers for the group creation algorithm with ML. 
However, the tests showed that the architecture design widely allows 
the use of ML for its operation. 

It is expected to perform architecture tests on a real network, testing 

Fig. 13. LDA, K-NN (K=3) Test accuracy = 0,74.  

Fig. 14. NCA, K-NN (K=3) Test accuracy = 0,74.  

Fig. 15. Comparison of accuracy with different classifier.  Fig. 16. Error Rate’s Comparison each classifier.  
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the clustering algorithm used in this simulation and observing its 
behavior when a new object joins the network. Thus, larger input data 
sets could be handled by further improving the classifier’s results, e.g., 
proposing a recurrent learning classifier such as RBNN or a deep 
learning technique. 

Declaration of Competing Interest 

None. 

Acknowledgments 

This work has been partially supported by the “Ministerio de Econ-
omía y Competitividad” in the “Programa Estatal de Fomento de la 
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